The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

What Makes Water Hard?

If substantial amounts of either calcium or magnesium, both nontoxic minerals, are present in drinking water, the water is said to be hard. “Hard” water does not dissolve soap readily, and therefore making lather for washing and cleaning is difficult. Conversely, water containing little calcium or magnesium is called “soft” water.
Special Water Needs

Safe Drinking Water Hotline (1-800-426-4791).

Lessen the risk of infection by Cryptosporidium and people should seek advice about drinking water from infants can be particularly at risk from infections. These undergone organ transplants, people with HIV/AIDS Immuno-compromised persons such as persons with water needs.

We take our responsibility seriously for providing you and your family with quality drinking water. We encourage you to share your thoughts with us on the information contained in this report. Should you ever have any questions or concerns, we are always available to assist you.

Drinking water, including bottled water, may reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA’s Safe Drinking Water Hotline (1-800-426-4791).

Where Does the District’s Water Come From?

The District’s water supply comes solely from the State Water Project and the Colorado River. The State water originates in Northern California where it is captured in reservoirs north of Sacramento and released into the Delta of the Sacramento and San Joaquin rivers. It is transported via the 444-mile California Aqueduct to State Water Project contractors such as the Metropolitan Water District of Southern California (MWD). The District water is filtered and disinfected by MWD at its Jensen Filtration Facility in Granada Hills. MWD then delivers the water to its 26-member public agencies, including Calleguas Municipal Water District (CMWD), Ventura County’s regional wholesale purveyor and the District’s direct supplier.

CMWD delivers water to the Bell Canyon community with the help of Ventura County Waterworks District No. 8, operated by the City of Simi Valley. CMWD brings the water into Ventura County through its mile-long tunnel in the Santa Susana Mountains. The water then travels through Ventura County Waterworks District No. 8 to Bell Canyon.

The District provides water service through 730 service connections to 2,049 people in the Bell Canyon area. The District distribution system consists of two reservoirs and approximately 18 miles of water lines. In 2017, the District supplied 1,106 acre-feet of water for residential, industrial, commercial, institutional and fire protection needs.

Lead in Household Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen, disinfectant levels, and an acceptable taste and smell. During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at that time. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use and avoid using hot water to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Radon is a radioactive gas that you cannot see, taste, or smell. It is found throughout the U.S. Radon can move up through the ground and into a home through cracks and holes in the foundation. Radon can build up to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering, washing dishes, and other household activities. Compared to radon entering the home through soil, radon entering the home through tap water will in most cases be a small source of radon in indoor air. Radon is a known human carcinogen. Breathing air containing radon can lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. If you are concerned about radon in your home, test the air in your home. Testing is inexpensive and easy. You should purchase radon removal for your home if the level of radon in your air is 4 picocuries per liter of air (pCi/L) or higher. There are simple ways to fix a radon problem that are not too costly. For additional information, call your State radon program (1-800-745-7236), the USEPA Safe Drinking Water Act Hotline (1-800-426-4791), or the National Safety Council Radon Hotline (1-800-SOS-RADON).
Summary of Water Quality Results For 2017

During the past year, we have taken hundreds of drinking water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants. The tables below list all the drinking water contaminants that were detected in 2017. The State requires that we monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year. Some of this data, though representative of water quality, are more than one year old.

PRIMARY DRINKING WATER STANDARDS—Mandatory Health-Related Standards

<table>
<thead>
<tr>
<th>Parameter (Unit of Measure)</th>
<th>MCL [MRDL]</th>
<th>PHG [MCLG] [MRDLG]</th>
<th>Average</th>
<th>Range</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARITY (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity (NTU) (TT)</td>
<td>Highest Single Value</td>
<td>0.06</td>
<td>% of samples <0.3</td>
<td>100%</td>
<td>No</td>
</tr>
</tbody>
</table>

DISINFECTION BY-PRODUCTS AND DISINFECTION RESIDUALS

- Bromate (ppb) (b): 10 0.1 7.2 ND - 8.9 No By-product of drinking water disinfection
- Haloacetic Acids (ppb) (c): 60 3.8 0 - 8 No By-product of drinking water disinfection
- Total Chlorine Residual (ppm) (d): [4] 0.86 0.14 - 2.20 No Drinking water disinfectant added for treatment
- Total Trihalomethanes (ppb) (c): 80 2.8 21.1 - 36.3 No By-product of drinking water chlorination

INORGANIC ORGANICS

- **Aluminum (ppb)**: 1,000 600 86 ND - 120 No Erosion of natural deposits, residual from water treatment process
- **Arsenic (ppb)**: 10 0.004 0.2 ND - 7 No Erosion of natural deposits, runoff from orchards
- **Barium (ppb)**: 1 2 ND n/a No Erosion of natural deposits, discharge from oil & metal refineries
- **Fluoride - Distribution System (ppm) (d)**: 2.0 1 0.7 - 1.3 No Water additive that promotes strong teeth
- **Nitrate (as NO3) (ppm)**: 10 10 0.6 ND - 26 No Runoff and leaching from fertilizer use, erosion of natural deposits
- **Selenium (ppb)**: 50 30 0.5 ND - 26 No Runoff and leaching from fertilizer use, erosion of natural deposits

RADIOACTIVITY

- **Gross Alpha Particle Activity (pCi/L)**: 15 (0) ND ND - 3.3 No Erosion of natural deposits
- **Gross Beta Particle Activity (pCi/L)**: 50 (0) ND n/a No Decay of natural and man-made deposits
- **Uranium (ppb)**: 20 0.43 ND ND - 1 No Erosion of natural deposits

Home Tap Water Samples Collected for Lead and Copper Analyses

<table>
<thead>
<tr>
<th>Parameter (Unit of Measure)</th>
<th>Year Sampled</th>
<th>RAL</th>
<th>PHG [MCLG]</th>
<th>Amount Detected (90% >)</th>
<th># Sites Above AL / Total Sites</th>
<th>Violation</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppm)</td>
<td>2015</td>
<td>15</td>
<td>0.2</td>
<td>0.7</td>
<td>0 / 10</td>
<td>No</td>
<td>Corrosion of home plumbing systems; erosion of natural deposits</td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>2015</td>
<td>1.3</td>
<td>0.3</td>
<td>0.38</td>
<td>0 / 10</td>
<td>No</td>
<td>Corrosion of home plumbing systems; erosion of natural deposits</td>
</tr>
</tbody>
</table>

SECONDARY DRINKING WATER STANDARDS—Aesthetic Standards

<table>
<thead>
<tr>
<th>Parameter (Unit of Measure)</th>
<th>MCL</th>
<th>Notification Level</th>
<th>Average</th>
<th>Range</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (ppm)</td>
<td>200</td>
<td></td>
<td>88</td>
<td>ND - 120</td>
<td>No</td>
</tr>
<tr>
<td>Color (ppb)</td>
<td>500</td>
<td></td>
<td>85</td>
<td>74 - 121</td>
<td>No</td>
</tr>
<tr>
<td>Fluoride (ppb)</td>
<td>15</td>
<td></td>
<td>2</td>
<td>ND - 5</td>
<td>No</td>
</tr>
<tr>
<td>Sulfate (ppb)</td>
<td>3</td>
<td></td>
<td>2</td>
<td>ND - 2</td>
<td>No</td>
</tr>
<tr>
<td>Total Dissolved Solids (ppm)</td>
<td>1,000</td>
<td></td>
<td>347</td>
<td>316 - 440</td>
<td>No</td>
</tr>
<tr>
<td>Turbidity (NTU) (TT)</td>
<td>5</td>
<td></td>
<td>ND</td>
<td>0 - 0.9</td>
<td>No</td>
</tr>
</tbody>
</table>

ADDITIONAL PARAMETERS (Unregulated)

<table>
<thead>
<tr>
<th>Parameter (Unit of Measure)</th>
<th>Secondary MCL</th>
<th>Notification Level</th>
<th>Average</th>
<th>Range</th>
<th>Violation</th>
<th>Major Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity (ppm)</td>
<td>NS</td>
<td>NS</td>
<td>87</td>
<td>85 - 110</td>
<td>No</td>
<td>Erosion of natural deposits, residual from water treatment process</td>
</tr>
<tr>
<td>Boron (ppb)</td>
<td>NS</td>
<td>1,000</td>
<td>193</td>
<td>100 - 300</td>
<td>No</td>
<td>Runoff and leaching from natural deposits, seawater influence</td>
</tr>
<tr>
<td>Calcium (ppm)</td>
<td>NS</td>
<td>800</td>
<td>27</td>
<td>0 - 28</td>
<td>No</td>
<td>Naturally-occurring organic materials</td>
</tr>
<tr>
<td>Hardness (Total Hardness) (ppg)</td>
<td>NS</td>
<td>7.0</td>
<td>6.9 - 9</td>
<td>No</td>
<td>Runoff and leaching from natural deposits, seawater influence</td>
<td></td>
</tr>
<tr>
<td>Magnesium (ppm)</td>
<td>NS</td>
<td>13</td>
<td>12 - 17</td>
<td>No</td>
<td>Runoff and leaching from natural deposits, seawater influence</td>
<td></td>
</tr>
<tr>
<td>Nitrate (as NO3) (ppm)</td>
<td>NS</td>
<td>10</td>
<td>0.0</td>
<td>ND - 3.2</td>
<td>No</td>
<td>Runoff and leaching from natural deposits, seawater influence</td>
</tr>
<tr>
<td>Nitrite (ppm)</td>
<td>NS</td>
<td>0</td>
<td>0.0</td>
<td>ND - 9.4</td>
<td>No</td>
<td>Runoff and leaching from natural deposits, seawater influence</td>
</tr>
<tr>
<td>Total Organic Carbon (ppm)</td>
<td>NS</td>
<td>2.5</td>
<td>2.2 - 3.1</td>
<td>No</td>
<td>Runoff and leaching from natural deposits, seawater influence</td>
<td></td>
</tr>
</tbody>
</table>

PPCPs and How to Dispose of Them

When cleaning out your medicine cabinet, what do you do with your expiring pills? Many people flush them down the toilet or toss them into the trash. Although this seems convenient, these actions could threaten our water supply.

Recent studies are generating a growing concern over pharmaceuticals and personal care products (PPCPs) entering water supplies. PPCPs include human and veterinary drugs (prescription or over-the-counter) and consumer products, such as cosmetics, fragrances, lotions, sunscreens, and house cleaning products. Many of these drugs and personal care products do not biodegrade and may persist in the environment for years.

The best and most cost-effective way to ensure safe water at the tap is to keep our source waters clean. Never flush unused medications down the toilet or sink. Instead, check to see if the pharmacy where you made your purchase accepts medications for disposal, or contact your local health department for information on proper disposal methods and drop-off locations. You can also go online to the Web at www.Earth911.com to find more information about disposal locations in your area.

ABBREVIATIONS, DEFINITIONS, AND NOTES

- **n/a** = not applicable
- **ND** = Not Detected
- **g/g** = grams per gallon
- **NTU** = Nephelometric Turbidity Unit
- **pCi/L** = PicoCuries per Liter
- **NS** = No Standard
- **ppb** = parts per billion, or nanograms per liter (ng/L)
- **ppm** = parts per million, or micrograms per liter (µg/L)
- **µg/cm² = micrograms per square centimeter
- **pL = parts per trillion, or nanograms per liter (ng/L)
- **RAI = Regulatory Action Level
- **PHG = Primary Health Goal
- **MCL = Maximum Contaminant Level
- **MRDL = Maximum Residual Disinfectant Level
- **MRDLG = Maximum Residual Disinfectant Goal Level
- **MCLG = Maximum Contaminant Level Goal
- **Maximum Contaminant Level (MCL)** = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLs are set by the U.S. Environmental Protection Agency.
- **Maximum Contaminant Level Goal (MCLG)** = The level of a drinking water contaminant below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.
- **Maximum Residual Disinfectant Level (MRDL)** = The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLs are set by the U.S. Environmental Protection Agency.
- **Maximum Residual Disinfectant Goal Level (MRDLG)** = The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs are set by the U.S. Environmental Protection Agency.
- **By-product of drinking water chlorination** = A by-product of drinking water disinfection from the chlorination process.
- **By-product of drinking water disinfection** = A by-product of drinking water disinfection from the chlorination process.
- **Runoff and leaching from natural deposits** = Runoff and leaching from natural deposits.
- **Corrosion of home plumbing systems** = Corrosion of home plumbing systems.
- **By-product of drinking water chlorination** = A by-product of drinking water disinfection from the chlorination process.
- **By-product of drinking water disinfection** = A by-product of drinking water disinfection from the chlorination process.
- **Runoff and leaching from natural deposits** = Runoff and leaching from natural deposits.
- **Corrosion of home plumbing systems** = Corrosion of home plumbing systems.
- **By-product of drinking water chlorination** = A by-product of drinking water disinfection from the chlorination process.
- **By-product of drinking water disinfection** = A by-product of drinking water disinfection from the chlorination process.
- **Runoff and leaching from natural deposits** = Runoff and leaching from natural deposits.
- **Corrosion of home plumbing systems** = Corrosion of home plumbing systems.