Frequently Asked Questions on Flood Statistics

1. What is $100-\mathrm{yr}$ flood?

Answer: $100-\mathrm{yr}$ flood has a probability of $1 / 100=.01$, or 1%, of being equaled or exceeded in any single year.
2. What is Return Period?

Answer: An annual maximum event has a return period (or recurrence interval) of T years if its magnitude is equaled or exceeded once, on the average, every T years. The reciprocal of T is the exceedance probability of that event, that is, the probability that the event is equaled or exceeded in any one year.
3. What is the probability that at least one $100-\mathrm{yr}$ flood will occur during the $50-\mathrm{yr}$ lifetime of a flood control project? Ans: 0.395 . So there is a 39.5% chance of occurrence of the $100-\mathrm{yr}$ or larger event over the $50-\mathrm{yr}$ lifetime of the project. This is just risk of failure. Please see 6 also.

$$
\text { Risk }=1-(1-1 / \mathrm{T})^{\mathrm{n}}=1-(1-1 / 100)^{50}=1-.6050=0.395
$$

4. What is the probability that 100 -yr flood or greater will not occur in $50-\mathrm{yr}$?

Answer: Probability of no occurrence

$$
=(1-\mathrm{p})^{\mathrm{n}}=(1-1 / \mathrm{T})^{\mathrm{n}}=(1-1 / 100)^{50}=.6050
$$

Thus, there is a 60.5% chance (60.5% reliability) that the $100-\mathrm{yr}$ or larger flood will not occur during a sequence of $50-\mathrm{yr}$.
5. (a) On average, how many times will a 10-yr flood occur in $50-\mathrm{yr}$ period? Ans: 5 (b) What is the probability that exactly 5 and only $510-\mathrm{yr}$ or greater independent floods will occur in a $50-\mathrm{yr}$ period? Ans: 0.185 or 18.5%
(c) What is the probability that exactly 4 and only $410-\mathrm{yr}$ or greater independent floods will occur in a $50-\mathrm{yr}$ period? Ans: 0.181 or 18.1%
(d) What is the probability that exactly 6 and only $610-\mathrm{yr}$ or greater independent floods will occur in a 50 -yr period? Ans: 0.154 or 15.4%
6. What is Risk?

Answer: Over a sequence of n yr, the probability that the T-yr event or larger will occur at least once is called the risk. Thus risk is the sum of the probabilities of 1 T-yr or larger flood, 2 T-yr or larger floods, 3 T-yr or larger floods,, n floods occurring during n-year period, but it is easier to calculate 1- prob(0 T-yr floods): Risk or probability of at least one occurrence

$$
\begin{aligned}
& =1-\mathrm{P}(0)=1-\text { Prob }\left(\text { no occurrence in } \mathrm{n} \text { yr) } \quad=1-(1-\mathrm{p})^{\mathrm{n}}\right. \\
& =1-(1-1 / \mathrm{T})^{\mathrm{n}} \quad \text { where } \mathrm{T}=\text { return period }
\end{aligned}
$$

Table 1.0 shows the return periods for various degrees of risk and expected design life. For example, for 98.4 -yr event (return period) and 50 -yr expected design life, the risk or the probability of occurrence of a98.4-yr event or larger in 50-yr design life is 40% and the reliability or the probability of no occurrence of 98.4 yr event in $50-\mathrm{yr}$ design life is 60%.

Question 5 Equations

Answer:
(a) A 10-yr flood has $\mathrm{p}=1 / 10=0.1$

Expected probability $=n^{*} p=50 * .1=5$
Thus, on average a $10-\mathrm{yr}$ flood will occur 5 times in a $50-\mathrm{yr}$ period.
(b) Binomial distribution: $\mathrm{fx}=(\mathrm{x}: \mathrm{n}, \mathrm{p})=\binom{n}{x} \mathrm{p}^{\mathrm{x}} \mathrm{q}^{\mathrm{n}-\mathrm{x}} \quad$ where $\mathrm{q}=1-\mathrm{p}$

$$
\begin{aligned}
& =\binom{50}{5}(0.1)^{5}(0.9)^{50-5} \\
& =(50!/(5!45!))(0.1)^{5}(0.9)^{50-5} \\
& =0.1849
\end{aligned}
$$

Thus, there is 18% chance that 5 and only 5 number $10-\mathrm{yr}$ events in $50-\mathrm{yr}$ periods will occur.
(c) Probability of 4 and only 4 number 10-yr flood in a $50-\mathrm{yr}$ period

$$
\begin{aligned}
& =\binom{50}{4}(0.1)^{4}(0.9)^{50-4} \\
& =(50!/(4!46!))(0.1)^{4}(0.9)^{46} \\
& =.1809
\end{aligned}
$$

Thus, there is 18% chance that 4 and only 4 number10-yr events in $50-\mathrm{yr}$ periods will occur.
(d) Probability of 6 and only 6 number 10-yr flood in a $50-\mathrm{yr}$ period

$$
\begin{aligned}
& =\binom{50}{6}(0.1)^{6}(0.9)^{50-6} \\
& =(50!/(6!44!))(0.1)^{6}(0.9)^{44} \\
& =.1541
\end{aligned}
$$

Thus, there is 15% chance that 6 and only 6 number $10-\mathrm{yr}$ events in $50-\mathrm{yr}$ periods will occur.
7. What is Reliability?

Answer: Reliability may be defined as 1 - risk. Thus,
Reliability $=(1-p)^{\mathrm{n}}$

$$
=(1-1 / T)^{n}
$$

References:

1. Frequency Analysis
2. Statistical Method in Hydrology - Charles T. Haan

Table 1.0
Return Periods for Various Degrees of Risk and Expected Design Life

Expected Design Life											Life of Project
RISK		RELIABILITY	2	5	10	15	20	25	50	100	
	(75	25	2	4.1	7.7	11.3	14.9	18.5	36.6	72.6	
	63	37	2.6	5.5	10.6	15.6	20.6	25.6	50.8	101.1	
	50	50	3.4	7.7	14.9	22.1	29.4	36.6	72.6	144.8	
	40	60	4.4	10.3	20.1	29.9	39.7	49.4	98.4	196.3	
	30	70	6.1	14.5	28.5	42.6	56.6	70.6	140.7	280.9	
	25	75	7.5	17.9	35.3	52.6	70	87.4	174.3	348.1	Return Period of
		80	9.5	22.9	45.3	67.7	90.1	112.5	224.6	448.6	Design Storm
	15	85	12.8	31.3	62	92.8	123.6	154.3	308.2	615.8	
	10	90	19.5	48	95.4	142.9	190.3	237.8	475.1	949.6	
	5	95	39.5	98	195.5	292.9	390.4	487.9	975.3	1950.1	
	2	98	99.5	248	495.5	743	990.5	1238	2475.4	49503	
	1	99	199.5	498	995.5	1493	1990.5	2488	4975.5	9950.4	
	0.5	99.5	399.5	998	1995.5	2993	3990.5	4988	9975.5	19950.5	

Risk that design storm or larger will occur during project life

Acceptance Sampling Problem

$\operatorname{Prob}(5$ def $)=\mathrm{f}_{\mathrm{X}}(5 ; 50,20,12)=\binom{1}{5}\binom{38}{15} /\binom{50}{20}=0.26$

BERNOULLI PROCESSES

Binomial Distribution

Consider a discrete time scale. At each point on this time scale an event may eitite occur or not occur. Let the probability of the event occurring be p for every may either the time scale. Thus the occurrence of the event at any poing be p for every point on pendent of the history of any prior occurrence st any point on the time scale is ind: an occurrence at the $i^{\text {th }}$ point on the time scale nonoccurrences. The probability 0 ese properties is said to be a Benoullime scale is p for $\mathrm{i}=1,2, \ldots$ A process having puli process.
of the maximum flow exceenouli process consider that during any year the probability nology for a flow exceeding a $10,000 \mathrm{cfs}$ on a particular stream is p. Common teri peak flow in any year is indepen value is an exceedance. Further consider that the process to be a Bernoulli process) from year to year (a necessary condition for the $10,000 \mathrm{cfs}$. We can neglect the prs). Let $q=1-p$ be the probability of not exceeding peak flow rates would be a gently 10,000 cf since the $10,000 \mathrm{cfs}$ would be zero. In thinuous process so the probability of a peak of exactly nominally 1 year in time apart. We can ne the time scale is discrete with the points being. the occurrence of a peak flow in excess now make certain probabilistic statements about

For example the probability of an $10,000 \mathrm{cfs}$ (an exceedance).
1 or 2 can be evaluated from equation exceedance occurring in year 3 and not in years year to year. The probability of (exactly) as qq since the process is independent from $\mathrm{qpq}+\mathrm{qqp}$ since the exceedance could) one exceedance in any 3-year period is $\mathrm{pqq}+$ Thus the probability of (exactly) one exccur in either the first, second or third year.

In a similar manner the probability of 2 ex ce in three years is 3 qq 2 the summation of the terms ppqqq, of these terms is equivalent to $p^{2} q^{3}$ and that the number $q q p p$. It can be seen that each of ways of arranging 2 items (the p 's) among number of terms is equal to the number total number of terms is (5) or 10 so s) among 5 items (the p's and q's). Therefore the years is $10 p^{2} q^{3}$.

This result
is $\binom{n}{x} p^{x} q^{n-x}$. The result is $X=x$ occurrences of an event in n indecent Bernoulli process so that the probability of rence in a single trial is given by

$$
f_{x}(x ; n, p)=\binom{n}{x} p^{x} q^{n-x}
$$

$$
\begin{equation*}
x=0,1,2, \ldots, n \tag{4.5}
\end{equation*}
$$

Equation 4.5 is known as the binomial distribution.
The binomial distribution and the Bernoulli p
Any process that may occur with probability p process are not limited to a time scale. individual trials may be a Bernoulli process and fat discrete points in time or space or in

The cumulative binomial distribution is follow the binomial distribution.

$$
F_{X}(x ; n, p)=\sum_{i=0}^{x}\binom{n}{i} p^{i} q^{n-i}
$$

$$
x=0,1,2, \ldots, n
$$

and gives the probability of x or fewer occurrences of an event in n independent trials if the probability of an occurrence in any trial is p.

Continuing the above example, the probability of less than 3 exceedances in 5 years is

$$
\begin{aligned}
\mathrm{F}_{\mathrm{X}}(2 ; 5, \mathrm{p}) & =\sum_{\mathrm{i}=0}^{2}\binom{5}{\mathrm{i}} \mathrm{p}^{\mathrm{i}} \mathrm{q}^{5-\mathrm{i}} \\
& =\mathrm{f}_{\mathrm{x}}(0 ; 5, \mathrm{p})+\mathrm{f}_{\mathrm{X}}(1 ; 5, \mathrm{p})+\mathrm{f}_{\mathrm{X}}(2 ; 5, \mathrm{p})
\end{aligned}
$$

The mean and variance of the binomial distribution are

$$
\begin{equation*}
E(X)=n p \tag{4.7}
\end{equation*}
$$

$\operatorname{Var}(\mathrm{X})=\mathrm{npq}$
The coefficient of skew is $(q-p) / \sqrt{n p q}$ so that the distribution is symmetrical for $p=q$, skewed to the right for $q>p$ and skewed to the left for $q<p$.

Example 4.4. On the average, how many times will a 10 -year flood occur in a 40 -year period? What is the probability that exactly this number of 10 -year floods will occur in a 40-year period?

Solution: A 10 -year flood has $p=1 / 10=0.1$

$$
\begin{aligned}
& E(X)=n p=40(0.1)=4 \\
& f_{X}(4 ; 40,0.1)=\binom{4}{4}(0.1)^{4}(0.9)^{36}=0.2059
\end{aligned}
$$

Comment: This problem illustrates the difficulty of explaining the concept of return period to laymen. We have said that on the average a 10 -year event occurs once every 10 years and that in a 40 -year period we expect it to occur 4 times. Yet we have also shown that in about 80% ($100(1-0.2059)$) of all possible independent 40 -year periods the 10 year event will not occur exactly 4 times. As a matter of fact the probability that it will occur 3 times is nearly identical to the probability it will occur 4 times (0.2003 vs. 0.2059). The number of occurrences, X , is truly a random variable (with a binomial distribution).

The individual and cumulative terms of the binomial distribution are tabled in many references (see for instance Beyer (1968) or Selby (1970)). The highest value of p given in most tables is 0.5 . For values of p in excess of 0.5 the roles of p and q and x and $n-x$ can be reversed since $f_{x}(x ; n, p)=f_{x}(n-x ; n, q)$.

The binomial distribution has an additive property (Gibra 1973). That is if X has a binomial distribution with parameters n_{1} and p and Y has a binomial distribution with parameters n_{2} and p, then $Z=X+Y$ has a binomial distribution with parameters $n=n_{1}+$ n_{2} and p .

The binomial distribution can be used to approximate the hypergeometric distribution if the sample selected is small in comparison to the number of items N from

$$
\begin{aligned}
& \text { Source:- Statistical Melter in Hydrology p } 70-71 \\
& \text { purpose:- FAQ Statistical tensions. Man. }
\end{aligned}
$$

Fitting a Distribution to Data
An intuitive use for moment estimates is to fit probability distributions to data by equating the moment estimates obtained from the data to the functional form for the distribution. For example, the normal distribution has parameters mean μ and variance σ^{2}. The method of moments fit for the normal distribution is simply to use the estimates from the data for the mean and variance. As another example, the parameter λ of the exponential distribution is equal to the reciprocal of the mean of the distribution. Hence, the method of moments fit is $\hat{\lambda}=1 / \hat{\mu}$.

Graphical methods and the method of maximum likelihood are two alternative procedures to the method of moments for fitting distributions to data. Graphical methods will be discussed in Section 3.6. Although the method of maximum likelihood is superior to the method of moments by some statistical measures, it is generally much more computationally complex than the method of moments and is beyond the scope of this text. Maximum likelihood methods for several distributions used in hydrology are presented by Kite (1977).

The main objective of determining the parameters of a distribution is usually to evaluate its CDF. In some cases, however, the same purpose may be accomplished without calculating the actual distribution parameters. Instead, the distribution is evaluated using frequency factors K, defined as

$$
\begin{equation*}
K=\frac{x-\bar{x}}{S_{x}} \tag{3.43}
\end{equation*}
$$

The value of K is a function of the desired value for the CDF and may also be a function of the skewness. Hence, if K is known for the calculated skewness and desired CDF value, the corresponding value of x can be calculated. Frequency factors will be illustrated subsequently for several of the distributions to be discussed.
3.4

RETURN PERIOD OR RECURRENCE INTERVAL
The most common means used in hydrology to indicate the probability of an event is to assign a return period or recurrence interval to the event. The return period is defined as follows:
An annual maximum event has a return period (or recurrence interval) of T years if its magnitude is equaled or exceeded once, on the average, every T years. The reciprocal of T is the exceedance probability of the event, that is, the probability that the event is equaled or exceeded in any one year.

Thus, the 50 yr flood has a probability of 0.02 , or 2%, of being equaled or exceeded in any single year. It is imperative to realize that the return period implies nothing about the actual time sequence of an event. The 50 -yr flood does not occur like clockwork once every 50 yr. Rather, one expects that on the average, about twenty 50 -yr floods will be experienced during a 1000 -yr period. There could in fact be two 50 -yr floods in a row (with probability $0.02 \times 0.02=0.0004$ for independent events).

The concept of a return period implies independent events and is usually found by analyzing the series of maximum annual floods (or rainfalls, etc.). The largest event in one year is assumed to be independent of the largest event in any other year. But it is also possible to apply such an analysis to the n largest independent events from an n-yr period, regardless of the year in which they occur. In this case, if the second largest event in one year was greater than the largest event in another year, it could be included in the frequency analysis. This series of n largest (independent) values is called the series of annual exceedances, as opposed to an annual maximum series. Both series are used in hydrology, with little difference at high return periods (rare events). There are likely to be more problems of ensuring independence when using annual exceedances, but for low return periods annual exceedances give a more realistic lower return period for the same magnitude than do annual maxima. The relationship between return period based on annual exceedances T_{e} and annual maxima T_{m} is (Chow, 1964)

$$
\begin{equation*}
T_{e}=\frac{1}{\ln T_{m}-\ln \left(T_{m}-1\right)} . \tag{3.44}
\end{equation*}
$$

This relationship is shown in Fig. 3.10.

EXAMPLE 3.4

annual exceedances and annual maxima

Consider the following hypothetical sequence of river flows.

	THREE HIGHEST INDEPENDENT FLOWS (cfs)
YEAR	700, 300, 150 1 900, 600, 2 550, 400 3 200 4 850, 650, 5 500, 350, 5

The sequences of ranked annual maxima and annual exceedances are as follows.
$p^{x}(1-p)^{n-x}$. But this represents just one possible sequence for x successes and $n \div x$ failures; all possible sequences must be considered, including those in which the successes do not occur consecutively. The number of possible ways (combinations) of choosing x events out of n possible events is given by the binomial coefficient (Parzen, 1960)

$$
\begin{equation*}
\binom{n}{x}=\frac{n!}{x!(n-x)!} \tag{3.45}
\end{equation*}
$$

Thus, the desired probability is the product of the probability of any one sequence and the number of ways in which such a sequence can occur:

$$
\begin{equation*}
P(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \quad x=0,1,2,3, \ldots, n \tag{3.46}
\end{equation*}
$$

The notation $B(n, p)$ indicates the binomial distribution with parameters n and p; example PMFs are shown in Fig. 3.11. From Eqs. (3.19) and (3.28), the mean and variance of x are

$$
\begin{align*}
& E(x)=n p \tag{3.47}\\
& \operatorname{Var}(x)=n p(1-p) . \tag{3.48}
\end{align*}
$$

The skewness is

$$
\begin{equation*}
g=\frac{1-2 p}{[n p(1-p)]^{0.5}} . \tag{3.49}
\end{equation*}
$$

Clearly, the skewness is zero and the distribution is symmetric if $p=0.5$. The cumulative distribution function is

$$
\begin{equation*}
F(x)=\sum_{i=0}^{x}\binom{n}{i} p^{i}(1-p)^{n-i} \tag{3.50}
\end{equation*}
$$

Evaluation of the CDF can get very cumbersome for large values of n and intermediate values of x. It is tabulated by the Chemical Rubber Company (n.d.) and by the National Bureau of Standards (1950). For large values of n, the relationship between the binomial and beta distribution may be used (Abramowitz and Stegun, 1964; Benjamin and Cornell, 1970), or it may be approximated by the normal when $p \approx 0.5$.

EXAMPLE 3.5

RISK AND RELIABILITY

Over a sequence of $n \mathrm{yr}$, what is the probability that the T-yr event will occur at least once? The probability of occurrence in any one year (event) is $p=1 / T$, and the number of occurrences is $B(n, p)$. The Prob (at least one occurrence in n events) is called the risk. Thus, the risk is the sum of the probabilities of 1 flood, 2 floods, 3 floods, \ldots, n floods occurring

FIGURE 3.11
Binomial probability mass function (PMF). (From Benjamin and Cornell, 1970, Fig. 3.3. 1.)
during the n-yr.period, but this would be a very tiresome way in which to compute it. Instead,

$$
\begin{align*}
\text { Risk } & =1-P(0) \\
& =1-\operatorname{Prob}(\text { no occurrence in } n \mathrm{yr}) \\
& =1-(1-p)^{n} \\
& =1-(1-1 / T)^{n} . \tag{3.51}
\end{align*}
$$

Reliability is defined as 1 - risk. Thus,

$$
\begin{align*}
\text { Reliability } & =(1-p)^{n} \\
& =(1-1 / T)^{n} \tag{3.52}
\end{align*}
$$

This concept of risk and reliability is very important for hydrologic design. Equation (3.51) can be used to determine the return period required for a given design life and level of risk. Values are shown in Table 3.3 that illustrate the very high return periods required for low risk for a
long design life long design life.

EXAMPLE 3.6

CRITICAL FLOOD DESIGN

Consider the $50-\mathrm{yr}$ flood ($p=0.02$).
a) What is the probability that at least one $50-\mathrm{yr}$ flood will occur during the 30 -yr lifetime of a flood control project? This is just the risk of failure discussed above, and the distribution of the number of failures is $B(30,0.02)$. Thus, from Eq. (3.51),

$$
\begin{aligned}
\text { Risk } & =1-(1-0.02)^{30} \\
& =1-0.98^{30} \\
& =1-0.545 \\
& =0.455 .
\end{aligned}
$$

If this risk is too great, the engineer might design for the $100-\mathrm{yr}$ event for which the risk is

$$
\text { Risk }=1-0.99^{30}=0.26
$$

and the reliability is 0.74 . For this latter circumstance, there is a 26% chance of occurrence of the $100-\mathrm{yr}$ event over the $30-\mathrm{yr}$ lifetime of the
project.
b) What is the probability that the 100 -yr flood will not occur in 10 yr ? In 100 yr ?

For $n=10, \quad P(x=0)=(1-p)^{10}=0.99^{10}=0.92$,
For $n=100, \quad P(x=0)=(1-p)^{100}=0.99^{100}=0.37$.
Thus, there is a 37% chance (37% reliability) that the 100 -yr flood will not occur during a sequence of 100 yr .
c) In general, what is the probability of having no floods greater than the T-yr flood during a sequence of $\frac{q^{+}}{n}$ yr?

$$
P(x=0)=(1-1 / T) \Vdash^{n}
$$

TABLE 3.3
Return Periods for Various Degrees of Risk and Expected Design Life (Eq. 3.5 1)

RISK (\%)	$\underset{(\%)}{\text { RELIABILITY }}$	EXPECTED DESIGN LIFE, $n(\mathrm{yr})$							
		2	5	10	15	20	25	50	100
75	25	2.0	4.1	7.7	11.3	14.9	18.5	36.6	72.6
63	37	2.6	5.5	10.6	15.6	20.6	25.6	50.8	101.1
50	50	3.4	7.7	14.9	22.1	29.4	36.6	72.6	144.8
- 40	60	4.4	10.3	20.1	29.9	39.7	49.4	98.4	196.3
30	70	6.1	14.5	28.5	42.6	56.6	70.6	140.7	280.9
25	75	7.5	17.9	35.3	52.6	70.0	87.4	174.3	348.1
20	80	9.5	22.9	45.3	67.7	90.1	112.5	224.6	448.6
15	85	12.8	31.3	62.0	92.8	123.6	154.3	308.2	615.8
10	90	19.5	48.0	95.4	142.9	190.3	237.8	475.1	949.6
5	95	, 39.5	98.0	195.5	292.9	390.4	487.9	975.3	1950.1
2	98	99.5	248.0	495.5	743.0	990.5	1238.0	2475.4	4950.3
1	99	199.5	498.0	995.5	1493.0	1990.5	2488.0	4975.5	9950.4
0.5	99.5	399.5	998.0	1995.5	2993.0	3990.5	4988.0	9975.5	19950.5

