Attachment C

Characterization of Impounded Sediments

Los Angeles District Geotechnical Branch

Impounded sediment characterization, Matilija Dam, Matilija Creek watershed, Ventura County, California

Suitability of sediment for beach nourishment, natural release, or upland disposal

by

US Army Corps of Engineers, Los Angeles District Engineering Division, Geotechnical Branch Geology and Investigations Section 911 Wilshire Blvd, Los Angeles, CA 90017

(mailing addr: CESPL-ED-GG, PO Box 532711, LA, CA 90053-2325 email: mchatman@spl.usace.army.mil ph. 213-452-3585)

29 April 2002

Contents

	Page
Abstract	3
The problem	3
Goals of the sediment sampling and contaminant testing	3
Sampling and analysis plan and related findings	8
Past use of the watershed and existing natural conditions	8
Agricultural use	10
Recreational use	10
Mining (with discussion of general geologic setting)	10
Limestone	10
Sandstone	12
Unspecified types of stone	12
Uranium	12
HTRW regulatory database survey	13
Sanborn maps	13
Additional aerial photo search	15
Suitability of impounded sediments for beach nourishment and natural erosion	15
Specific analytes chosen for testing	15
Tests results and assessment	17
Gradation	19
Suitability of impounded sediments for upland disposal	19
Test results compared to 40 CFR, Part 261 definitions	20
Assessment of results	22
Cited references for text and for attachments	_ 22

Figures

•	
Fig. 1Matilija Reservoir in 1947, with unfilled reservoir	4
Fig. 2Matilija Reservoir in 1960	5
Fig. 3Matilija Reservoir in 1978	6
Fig. 4Matilija Reservoir in April 2000	7
Fig. 5Approximated contributory watershed of Matilija Reservoir	9
Fig. 6Closest mineral prospect sites in the contributory watershed to Matilija Reservoir	
(see others on fig. 5)	11
Fig. 7Regulatory database search area	14

Attachments

1Pre-exploration Sampling and Analysis Plan	25
2List of laboratories performing sediment quality tests on Matilija Reservoir samples	43
3Results of sediment quality tests	44
4Complete EDR, Inc., regulatory database search	94

Abstract. Impounded sediment of Matilija Dam is under study for a variety of "disposal" options, including several *upland disposal* options, and *beach nourishment*. The U.S. Army Corps of Engineers-Geotechnical Branch (*hereafter* "USACE-Geotech") fall-2001 testing of impounded sediment *quality* (i.e., contaminants) and *gradation* provides a technical footing for further consideration of each disposal option as this feasibility study proceeds.

USACE-Geotech gradation tests of impounded sediments delineate few segregated sand zones. Most have substantial in-mixing of fines and/or coarse material. Depending on the to-be-determined target beach grain-size compatibility criteria, some of the material from the delta front and upstream possibly may be used on beaches. None of the material below the reservoir pool (about ¹/₄ of the total) would be suitable for beach nourishment based on excessive fines. Most of the material in the upstreammost parts of reservoir infilling (about 1/3 of the total impounded sediment) has excessive coarse material and is not suitable for beaches unless processed to remove gravel, cobbles, and boulders, but additional sampling (by trenching) is needed to quantify the coarse fraction. That material ultimately may be shown to be best left in place. There are no formal regulatory criteria to assess beachsuitability of sediments based on contaminants, so USACE-Geotech used the Puget Sound Dredged Disposal Analysis (PSDDA) sediment quality criteria to screen 39 samples of impounded sediments from 15 drill holes. None of the impounded sediments exceed PSDDA limits for the 81 analytes determined and thus all are suitable for beach nourishment, with regard to contaminants at this screening level (the analytes include 17 pesticides, 4 butyltins, 7 PCBs, 17 PAHs, 13 phenols, 11 metals, 6 pthalates, TrPH, oil and grease, ammonia, total sulfides, water soluble sulfides, calcium carbonate; in addition, total solids, total volatile solids, and pH were determined). In a few instances, the more rigorous but equally non-regulatory NOAA sediment quality assessment criteria were exceeded by some samples for some analytes; those instances are documented. Historical research and regulatory database research determined no deleterious past use of the reservoir's contributory watershed: no metals mining or prospecting, no industrial development or agriculture, extremely limited commercial development. Past recreational use of the reservoir occurred; in that era, DDT likely was used for mosquito control. DDT was detected in some samples.

Prior to any sampling, EPA reviewed the Sampling and Analysis plan and stated that the Plan was suitable for this phase of study but that additional sediment *quality* and *gradation* tests would have to be performed on the sediment as it is mined for transport to the beach, so as to more precisely qualify it. There are no indications through testing or research to date that any of the impounded sediments qualify as *hazardous waste* (the upland disposal criteria) but for verification, some leachate tests for 40 CRF, Part 261 analytes are warranted prior to upland disposal.

The problem. Matilija Dam was built in 1947 for water supply. Deterioration of the dam's concrete (see attachment 1's fig. 1) led to two dam notching exercises in the past, to reduce stresses on the upper part of the dam. This reduced reservoir capacity. Historical aerial photography from 1947 through 2000 (figs. 1, 2, 3, 4, this report) demonstrates an 18-year period between 1960 and 1978 over which most of the remaining reservoir capacity was lost due to infilling with sediment, this following a 13-year time period (the first thirteen years of the reservoir's existence) in which there was very little sedimentation. From 1978 to 2000, a twelve-year period, there was little additional change in the volume of impounded sediment (see figs. 3, 4), but the damage has been done: the reservoir is nearly full, with just 300- to 400 ac-ft of the original 6,000 ac-ft of capacity remaining.

Goals of the sediment sampling and contaminant testing. Actions under consideration regarding Matilija Dam include demolition. If the dam were to be removed, the approximately 6

Figure 1.--Matilija Reservoir in 1947, with unfilled reservoir. Note dam in lower right of frame, as pointed out in the cover photo of this report. Photograph by "Tubis", supplied by EDR, Inc's. aerial photo database search.

Figure 2.-- Matilija Reservoir in 1960. Note dam in lower right of frame, boat docks on the reservoir, top, center of frame, small delta in upstreammost part of reservoir (far left of frame). Photograph by "Mark Hurd", supplied by EDR, Inc's. aerial photo database search.

Figure 3.-- Matilija Reservoir in 1978. Note dam in lower right of frame, very small remnant of reservoir pool. Photograph by "Pacific Air", supplied by EDR, Inc's. aerial photo database search.

Figure 4.--Matilija Reservoir in April 2000. Note water level is higher than in the 1978 photo (fig. 3). Photograph, annotations from U.S. Fish and Wildlife Service.

million cu yds of sediment impounded behind it would have to be dealt with. With the dam removed, impounded sediments would meet one or more of three possible fates:

- 1) natural erosion would move them down Matilija Creek, ultimately to the ocean;
- 2) selective mining, sorting, and transport would take suitable portions for any of a variety of uses, including:
 - near-site surface terracing with stabilization on the south bank of the reservoir area;
 - *land-fill cover and related uses;*
 - o land-fill disposal;
 - *commercial aggregate and stone;*
 - *beach nourishment;*
- 3) some combination of 1) and 2); for example, at least some part of the downstreammost sediments at the dam face would have to be excavated and moved to allow room for demolition, even if natural erosion is selected as the ultimate fate.

In August and September 2001, these impounded sediments were drilled and sampled by the U.S. Dept. of Interior, Bureau of Reclamation (hereafter, "*Reclamation*") at 15 locations, utilizing an exploration program by Reclamation and a gradation (i.e., particle-size analysis) sampling plan and a Sampling and Analysis Plan¹ for potential contaminants by the US Army Corps of Engineers, Geotechnical Branch (hereafter "*USACE-Geotech*"). The exploration was technically rigorous, requiring both truck- and barge-mounted drill apparatus and sensitivity for work performed in a wetland environment containing at least one threatened species (the Southern California red-legged frog). The USACE-Geotech Soils Testing Laboratory in El Monte, CA, preformed the gradation tests on all tested samples (83), and USACE-Geotech used four different contracted contaminant-testing laboratories (see attachment 2) for the potential contaminant analyte testing. Contaminant test results are in attachment 3. Collectively, assessment of the results of these tests allow it to be ascertained whether sediments generally are suitable for the various uses under consideration but additional monitoring sampling would take place during any excavation. The drilling and sampling program is documented in a report by Reclamation (2002).

Sampling and analysis plan and related findings. The Sampling and Analysis Plan developed prior to inception of field work by USACE-Geotech (attachment 1) lists the sampling protocols used in the field. The Plan includes research into past uses of the watershed upstream of the impounded sediments, and heavy factoring of perceived past uses into the chosen analytical suite applied to samples. The Plan was reviewed and accepted by EPA. Past use of the watershed is documented, below.

Past use of the watershed and existing natural conditions. Currently, the approximately 55 sq mi contributory watershed of the impounded reservoir sediments is about 85% comprised of the Matilija Wilderness (see fig. 5), a largely pristine area drained by Matilija Creek and the North Fork, Matilija Creek. The other approximately 15% of the contributory watershed is composed of relatively short streams that flow northward off the north slope of the Santa Ynez Mountains, and south-east draining Rattlesnake Canyon, which is about 1-½ mi long. About 2-½ square miles of the contributory watershed is privately held, semi-developed land with cabins and other

0

¹ See attachment 1 for the complete sampling and analysis plan.

TOPO! CD.

residences (note the white "privately held" area on fig. 5, along Matilija Creek immediately upstream from the reservoir).

<u>Agricultural use</u>. It was considered that the privately owned, yet rural land (fig. 5, white areas) extending for eight miles upstream of the reservoir, or some part of the Los Padres National Forest (all shaded land, dark and light, on fig. 5) might have been used for agricultural purposes in the past. Agricultural use suggests possible pesticide application, and pesticide application suggests possible impounded sediment contamination. Therefore, all reservoir sediment samples collected in 2001 were tested for a suite of pesticide compounds (see attachment 3). Aerial photos of the study area were examined for any evidence of past agricultural use. Available NRCS (U.S. Dept. Agriculture, Natural Resource Conservation Service) aerial photos included sets from:

- 1953 (black-and-white, partial coverage with no index; does not cover study area);
- 1959 (black-and-white, covers Matilija Creek for first 3 miles upstream of the dam);
- 1978 (black-and-white, full coverage of the study area);
- 1996 (color, covers Matilija Creek for first 6 miles upstream of the dam).

These photographs contain no evidence of agricultural land use. See also "additional aerial photo search" section, below.

<u>Recreational use</u>. The reservoir, now of very limited utility as a body of water, was not always in this condition (see fig. 2). Prior to silting in, Matilija Reservoir was an active recreational facility, and, as such there likely was pesticide spraying in the area for mosquitoes. If that was done, DDT-based pesticides very likely would have been used (Steve Jewitt, District Conservationist, NRCS, Somis Field Ofc., Somis CA, personal commun. to Mark Chatman, USACE-Geotech, 9 April, 2002). This is an alternative possibility for introduction of DDT into the reservoir sediments. DDT is present.

<u>Mining, with discussion of general geologic setting</u>. The entire contributory watershed is under tectonic stresses that force connate Ventura Basin waters to the surface in several locations as cool-water, sulfurous, <u>non</u>-metalliferous springs (Robert Lambeth, personal commun. to Mark Chatman, USACE-Geotech, 9 April 2002). Bedrock is exposed or under a thin veneer of soil in the vicinity of the reservoir. This bedrock is composed of interbedded limestones, sandstones, and shales. Prior to designating the Matilija Wilderness, a comprehensive all-minerals resource survey was done by the U.S. Bureau of Mines (Lambeth, 1982), a report that was instrumental in determining the absence of any significant mining in the contributory watershed to the reservoir. Within 1-¹/₂ mi of the impounded sediments of Matilija Reservoir are three locations at which limestone prospects exist and one for sandstone (fig. 6). The sandstone site is outside of the contributory watershed. Other stone production occurred farther upstream (fig. 5). One prospect is known for uranium minerals (fig. 6); it is not in the contributory watershed.

Limestone. The three limestone prospects, known as the Argilla group, Matilija group, and Ventura Cement Co. deposit (sites 1, 2, 3, respectively, on fig. 6) are sites at which Eocene-age algal limestone of the Sierra Blanca Formation were suggested, seventy-years-ago, to be potential sources of high-quality, dense, industrial limestone, but the localities, only approximately located, have never been developed to the point where production took place (Weber and others, 1973, *citing* Tucker and Sampson, 1932, pp. 266-268, *and citing* Bowen, ^o

Figure 6.--The closest mineral prospect sites in the contributory watershed of Matilija Reservoir (see others on fig. 5). Note Matilija Dam and the Reservoir. Shown by yellow 'X' with annotation. Also shown are 2001 Reclamation drill sites (red nos. 1-15; these are abbreviations. Hole MDH-02-01 is shown as "2" on map; hole MDH-08-01 is shown as "8", etc.). Original base from US Geological Survey Matilija 7.5 minute quadrangle map; this figure constructed with a digital base of that USGS map taken from a Wildflower Productions' TOPO! CD.

1966, p. 229). The Ventura Cement Co. deposit (site 3, fig. 6) is apparently the location anecdotally cited as the locus of past 'mining in Lime Canyon'. The Matilija group (site 2, fig. 6) is apparently the location of anecdotally cited past 'gold mining in Rattlesnake Canyon', which, in fact, is <u>un</u>related to metals mining or prospecting. These prospects are mentioned here for completeness and also due to the fact that at least the *Matilija* and *Ventura Cement* localities are anecdotally and erroneously confused with past 'metals mining'. The literature and discussions with professionals who performed comprehensive mineral resources field assessments in the past in the contributory watershed indicate there <u>has not</u> been any metals-related mining or prospecting. The fact that all three of these limestone prospect areas are within the contributory watershed of the reservoir is irrelevant; many acres of naturally occurring limestone bedrock also is exposed and none of it is a factor that could potentially degrade the quality of sediments accumulated in the reservoir.

Sandstone. The sandstone locality (site 4, fig. 6) reportedly utilizes Eocene-age Coldwater Formation sandstone as riprap and other stone products (Weber and others, 1973, p. 63). Between 1949, the year of initial operations at the mine, and 1980, 400,000 tons (short tons) of "Matilija sandstone" had been mined there. In 1980 the site was known as the Schmidt Quarry (Lambeth, 1982, p. 8). By January 2001, the location was renamed "Ojai Quarry", and was still in operation, shipping broken stone products produced from talus or colluvial² materials mined from benches terraced high upon the hillside (USACE-Geotech field observation, Jan. 2001). Ojai Quarry, mentioned here because of its proximity to the reservoir, is <u>not</u> within the contributory watershed of Matilija Reservoir impounded sediments and therefore is irrelevant to the quality of sediments impounded in the reservoir. But the quarry may be of value to this study in that it could be a point of disposal/utilization of rock from within the impounded sediments in the event that one of the many the mining-segregation-transport sediment-removal scenarios actually would be put into place in the future.

Unspecified types of stone. Lambeth (1982, p. 8) mentions an unspecified type of stone produced in small quantities within the Matilija Wilderness "for local use" but does not give locations. The aerial photo review by USACE-Geotech located two excavations (see fig. 5), where it is likely that stone was produced. The northern location is substantially larger than the southern one.

Uranium. A uranium-bearing mineral known as torbernite [hydrated copper-uranyl phosphate $(Cu(UO_2)_2(PO_4)_2 \cdot 10H_2O)$] occurs in a prospect on the bluffs at one location above Matilija Reservoir. The visible torbernite crystals³ are exposed in a series of prospect trenches (Robert Lambeth, personal commun. to Mark Chatman, USACE-Geotech, 9 April 2002). The location described by Mr. Lambeth possibly is the same cited and *approximately* located on a map in Weber and others (1973, pl. 3 and p. 66, *citing* Troxel and others, 1957, p. 676), about a mile and a quarter south-southeast of the Matilija Dam (see site 5, fig. 6, this report), although the mineral description from Troxel and others (1957) is different: "carnotite and other uranium minerals ... occur in lenses or pods of carbonaceous material in sandstone beds that lie in the gradational

0

² Colluvium is broken rock formed naturally by mass wasting and weathering; in other words the rock has <u>not</u> been comminuted by the actions of flowing water, and thus is <u>not</u> alluvium.

³ Torbernite typically occurs as green, flat, tabular, fluorescent crystals (Amethyst Galleries, Inc, 2002, website data).

contact between the Coldwater and Sespe Formations." There is no report of any mineral production from the site. The location was not field checked for this paper, but if the approximately located site on the map by Weber and others (1973) is correct, then this prospect *is not* within the contributory watershed of the impounded sediments at Matilija Reservoir, and is such a case would be irrelevant to the quality of the impounded sediments: the Weber and others (1973) plot is on land tributary to Kennedy Canyon which flows into the Ventura River directly and downstream of Matilija Dam. Torbernite is a naturally occurring copper-and-uranium mineral. No tests specifically for uranium were done on any of the collected sediment samples from this study, but copper was tested for in all the collected sediment samples from the reservoir. Copper, therefore, can be used in this instance as a tracer or a double check for anomalous torbernite contribution to the impounded sediments. Copper was not substantially elevated in any samples; in three samples, copper concentrations slightly exceed the NOAA ERL, as discussed below.

Systematic bulldozer trenching in the contributory watershed was apparent in a set of 1959-era aerial photographs (see text, below, under "*additional aerial photo search*"); these may have been for uranium. The areas were largely overgrown in a 1994 set of photos (see text below) and not visible in the 1996 NRCS set of photos.

<u>HTRW Regulatory database survey</u>. In a search for potentially problematic past land use that could involve HTRW⁴, a forty-one-database search of regulated activities/commodities was contracted to EDR, Inc., Southport, CT, in April 2002. Regulated activities and commodities covered in the search include handlers, storers, or transporters of hazardous materials and waste, State and Federal environmental protection problem sites, such as CERCLA, USTs and leaking USTs, sites of known or suspected groundwater contamination, sites of hazardous materials spills or cleanups. For complete listing of databases searched, see attachment 4. The search area was the first nine miles of Matilija Creek upstream from the dam, and for 1 mile on either side (fig. 7). The area selected for this search was delineated on the basis that it is the only place in the contributory watershed where there has been any development. There were no findings of significance in the database search. The only site inside of or upstream from the study area found via the database search is "Pro Ex. Fork Lift Propane", 3260 Matilija Canyon Road (Ojai, CA), listed because it is authorized to hold as much as 500 gal. of propane gas on the property (see fig. 7, site no. 1), according to the "business plan" filed with Ventura County Environmental Health Div.

<u>Sanborn maps</u>. In further research with regard to past, potentially deleterious activities, a search of Sanborn fire insurance maps was done under contract by EDR, Inc. There are no Sanborn maps for this area.

⁰

⁴ potentially <u>hazardous</u>, <u>t</u>oxic, or <u>r</u>adioactive <u>w</u>aste

Figure 7.--Regulatory database search area (green-dotted polygon) by EDR, Inc., extends for 8 miles upstream of the dam along Matilija Creek and one mile on either side of the creek. Red, numbered triangles are the findings from EDR search (see details in attachment 4). Triangles #2 and #3 are irrelevant as they are downstream of the reservoir. Triangle #1 is discussed in text, above ("HTRW regulatory database survey"). for more detail, use WORD's "zoom" feature. If the zoom has not been activated, click on view, toolbars, standard, down arrow, add more buttons, and click "zoom".

0

<u>Additional aerial photo search</u>. In addition to the 1953, 1959, 1978, and 1996 sets of NRCS aerial photos (see "agricultural use" section of text, above), a comprehensive search for aerial photos was contracted to EDR, Inc. The results are in the chart below

Aerial photo search results and findings, from EDR, Inc. databases.							
year/source	type/scale	coverage	assessment by USACE-Geotech				
1947 / Tubis	black-and-white 1" = 666 '	Dam under construction and unfilled reservoir, Matilija Creek only, upstream to Lime Canyon	No evidence of agriculture or mining				
1959 / Robinson	black-and-white 1" = 555 '	Dam and Matilija Creek only, upstream to Murrieta Canyon	No evidence of agriculture; evidence of possible bulldozer scrapings for uranium prospecting(?) shown on fig. 1 (overgrown by 1994); recreational use of reservoir (boating); delta barely starting to form at far upstream end of reservoir.				
1960 / Mark Hurd	black-and-white 1" = 555 '	Dam and Matilija Creek only, upstream to Lime Canyon	No evidence of agriculture or mining; delta barely starting to form at far upstream end of reservoir; recreational use of reservoir (boating)				
1978 / Pacific Air	false color (infrared?) 1" = 666 '	Dam and Matilija Creek only, upstream to Old Man Canyon	No evidence of agriculture or mining; reservoir nearly the same areal extent as in 2001				
1989 / Pacific Air	black-and-white 1" = 1,000 '	Dam and Matilija Creek only, upstream of reservoir to Lime Canyon	No evidence of agriculture or mining; water level high				
1994 / U.S. Geological Survey	black-and-white 1" = 666 '	Dam and Matilija Creek only, upstream of reservoir to Old Man Canyon	No evidence of agriculture; small excavation and dirt road on ridge north of Matilija Creek seen, about 1,000 ft south of the limestone #2 pit shown on fig. 2, this report; possible limestone prospect.				

Suitability of sediments for beach nourishment and natural erosion. Numerous Southern California recreational beaches are regularly in need of good sand sources to replenish sand lost to a variety of causes. This replenishment is known as *beach nourishment*. Of all the possible fates for the Matilija Dam impounded sediment, beach nourishment requires the most rigorous testing for potential contaminants (see attachment 3 for analytes list) because sediment, if placed on a beach, would be in and near the ocean and in sensitive littoral and benthic environments, to be populated by a variety of ocean organisms. Caution with regard to keeping potential contaminants out of that part of the environment is very important. The same testing regime should be applied to assess the impacts of natural erosion because, ultimately, the sediment would enter the ocean and at least some part would become incorporated into beaches. In addition to potential contaminants, the gradation, or particle-size distribution also must considered. Gradation is covered in subsequent sections of this text.

Specific analytes chosen for testing. As seen in attachment 3, specific analytes were chosen for testing. The list of analytes was selected on the follow considerations. The "full suite" of analyses (all analytes listed in attachment 3, including metals, pesticides, butyltins, phthalates, PCBs, PAHs, and phenols, plus some basic physical and chemical characteristics, 90 tests in all) is suitable as a first-level screening of sediment for all end uses, verifying, for example that the material tested would or would not be suitable (in terms of contaminants only) for beach nourishment or upland disposal. But the full suite is costly to run, and so was applied selectively

to only certain samples among the 15 drill sites [see drill sites on fig. 6, above], using criteria of location and field-identified gradation. Initially, as per the Sampling and Analysis Plan (attachment 1), cross-hole compositing was to be applied so that these tests could be considered as a screening of the overall mass of generally silty material or generally sandy material. In practice, no cross-hole or intra-hole compositing was applied in the field. Some samples to which the full suite was applied are mostly silts; others are mostly sands (see logs, Reclamation, 2002). A summary of the holes, environments, and tests is summarized in the chart below:

Summa	ry of HTRW tests run.		
hole	environment	no. of samples from hole/ type material	full or partial suite of tests
1	reservoir, below existing pool, near dam face	2 / mostly silt	all tested with " <u>full</u> suite"
2	reservoir, below existing pool	3 / mostly silt	all tested with "partial suite"
3	reservoir, below existing pool	3 / mostly silt w/ one sandy zone	all tested with "partial suite"
4	reservoir, at sediment "delta front"	1 / mostly silt	all tested with "partial suite"
5	reservoir, below existing pool	2 / mostly silt w/ one sandy zone	all tested with " <u>full</u> suite"
6	reservoir, near sediment "delta front"	1 / mostly silt	all tested with " <u>full</u> suite"
7	reservoir, near sediment "delta front"	1 / silt zone and major sandy zones	all tested with "partial suite"
8	coarser materials upstream of "delta front"	3 / half to mostly sand	all tested with "partial suite"
9	coarser materials upstream of "delta front"	4 / half to mostly sand; w/ a silt zone	one tested with " <i>full</i> suite"; the rest with "partial suite"
10	coarser materials upstream of "delta front"	4 / sand, silt, and gravel zones	all tested with " <u>full</u> suite"
11/11B	coarser materials upstream of "delta front"	3 / sand, silt, and gravel zones	all tested with "partial suite"
12	coarsest materials, upstream end of sediment	1 / sand, silt, and gravel zones	all tested with "partial suite"
13	coarsest materials, upstream end of sediment	1 / sand, silt, and gravel zones	all tested with "partial suite"
14	coarsest materials, upstream end of sediment	2 / sand, and gravel zones	all tested with "partial suite"
15	reservoir, below existing pool	8 / mostly silt w/ one sandy zone	all tested with "partial suite"

Based on the past use of the contributory watershed, it was thought by USACE-Geotech and the EPA to be effective and sufficient to test most samples for a reduced number of analytes, or a "partial suite" of tests. The partial suite includes eleven metals⁵ of environmental interest, twenty-one different chlorinated pesticides⁶, pH, ammonia, percent total solids, percent volatile solids, total organic carbon, total sulfides and soluble sulfides, oil and grease and TrPH⁷. The partial suite was selected to target potential contaminants most likely to occur in the study area and upstream contributory watershed, based on the known past use and natural conditions:

- no industry or commercial development, such as factories, gas stations, or dumps in the reservoir area, or upstream;
- land has been within the National Forest system for many years, with 85% of contributory watershed designated "Wilderness";
- permissively anticipated past agricultural land use (with pesticide application);
- anecdotal reports of metals prospecting;

⁵ Antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, zinc.

⁶ See attachment 3.

⁷ Total recoverable petroleum hydrocarbons.

• hot springs in the vicinity of the dam, suggesting possibility of naturally-occurring metals migration.

Thus, from the above list, the partial suite of tests focused on metals and pesticides. In all, over \$48,000 worth of lab tests were run for analytes; another \$2,700 was spent on gradation analyses.

Test results and assessment. Results in attachment 3, below, are organized by drill hole number. Locations of the holes are shown on fig. 6. All holes bear the prefix "MDH-xx-01" in the table below, which stand for "*Matilija Drill Hole-xx (hole number)-and "01" (for 2001, the year of the drilling)*". Hole 11B is a continuation of hole 11. All drilling was done by the U.S. Dept. of Interior, Bureau of Reclamation, in August and September, 2001. Descriptions of the hole locations are in the chart, above ("*Summary of HTRW tests run*").

There are not national criteria or widely-applied numerical tools for assessing test results, nor are there such specific standards for southern California. Therefore the *sediment quality guideline* ("SQG") known as Puget Sound Dredged Disposal Analysis (PSDDS), developed by a multi-agency⁸ consortium (PSSDA, 2000), was applied to the test results as a screening standard. PSDDS is an informal standard, not a regulated one. Applying PSDDS, it can be seen from attachment 3 that in no instance do the concentrations of any analyte exceed Screening Level (SL) or Maximum Level (ML) concentrations developed under PSSDA (see SL and ML columns in attachment 3). In that regard, based on potential contaminants only, *any of the sampled material in Matilija Dam would be suitable for use on a beach or for natural release that would eventually transport it to a beach*. EPA will decide, based on these data, whether Tier III (biological testing) is needed prior to any actual beach application, and has already stated that additional sampling for contaminants (Tier II sampling) must be done while materials are dewatered and prepared for selectively mining and transport to a beach. Gradation is discussed later in this report.

USACE-Geotech also compares test results to another, more rigorous, yet still informal SQG developed by NOAA⁹ (1999), and documented in Long and others (1995), by which "Effects Range - Low" (ERL) and "Effects Range - Median (ERM)" concentrations are recognized. Applying NOAA's ERLs and ERMs, it can be seen from attachment 3 that in no instance do the concentrations of any analyte exceed ERMs (see ERL and ERM columns in attachment 3). In several instances, nickel exceeds the ERL; in a few instances DDT components or total chlorinated pesticides exceeds the ERL; and rarely, copper, mercury, or and arsenic exceed the ERL. In two instances, specific PAHs exceed the ERL (see chart below). It is not unusual for sediment testing in southern California to encounter nickel and DDT components in exceedance of the ERL.

Chain-of-custody forms for these samples are available for examination at USACE-Geotech.

⁸ US Army Corps of Engineers, Seattle District; U.S. Environmental Protection Agency, Region 10; Washington Dept. of Natural Resources; and Washington Dept. of Ecology.

⁹ National Oceanic and Atmospheric Administration.

Sample test results exceeding NOAA ERLs.								
Hole / sample no.	Analyte - quantity	ERL	Note					
Nickel								
01-01 / 28.3- 33.3 ft	Nickel 23.5 mg/kg	20.9 mg/kg	n/a					
01-01 / 73.3- 78.1 ft	Nickel 22.4 mg/kg	20.9 mg/kg	n/a					
02-01 / 23- 28 ft	Nickel 22.6 mg/kg	20.9 mg/kg	n/a					
02-01 / 63- 68 ft	Nickel 21.5 mg/kg	20.9 mg/kg	n/a					
05-01 / 18- 23 ft	Nickel 26.9 mg/kg	20.9 mg/kg	n/a					
06-01 / 18- 23 ft	Nickel 27.1 mg/kg	20.9 mg/kg	n/a					
07-01 / 21- 23 ft	Nickel 22.5 mg/kg	20.9 mg/kg	n/a					
10-01 / 22.8- 27.8 ft	Nickel 23.5 mg/kg	20.9 mg/kg	n/a					
11-01 / 52.7- 55 ft	Nickel 22.1 mg/kg	20.9 mg/kg	n/a					
11B-01 / 33- 33.5 ft	Nickel 22.5 mg/kg	20.9 mg/kg	n/a					
12-01 / 23- 24 ft	Nickel 21.6 mg/kg	20.9 mg/kg	n/a					
14-01 / 13.5- 18 ft	Nickel 22.1 mg/kg	20.9 mg/kg	n/a					
14-01 / 18- 21.5 ft	Nickel 22.3 mg/kg	20.9 mg/kg	n/a					
15-01 / 18- 28 ft	Nickel 22.2 mg/kg	20.9 mg/kg	n/a					
15-01 / 28- 38 ft	Nickel 22.6 mg/kg	20.9 mg/kg	n/a					
15-01 / 38- 48 ft	Nickel 23.7 mg/kg	20.9 mg/kg	n/a					
15-01 / 48- 58 ft	Nickel 26.6 mg/kg	20.9 mg/kg	n/a					
15-01 / 58- 68 ft	Nickel 26.2 mg/kg	20.9 mg/kg	n/a					
15-01 / 68- 78 ft	Nickel 27.9 mg/kg	20.9 mg/kg	n/a					
15-01 / 78- 85 ft	Nickel 34.5 mg/kg	20.9 mg/kg	n/a					
Copper	-							
05-01 / 18- 23 ft	Copper 34.2 mg/kg	34 mg/kg	n/a					
15-01 / 68- 78 ft	Copper 38.0 mg/kg	34 mg/kg	n/a					
15-01 / 78- 85 ft	Copper 42.1 mg/kg	34 mg/kg	n/a					
Mercury	1							
04-01 / 18- 23 ft	Mercury 0.19 mg/kg	0.15 mg/kg	n/a					
09-01 / 52.7- 55 ft	Mercury 0.18 mg/kg	0.15 mg/kg	n/a					
11-01 / 52.7- 55 ft	Mercury 0.153 mg/kg	0.15 mg/kg	n/a					
15-01 / 58- 68 ft	Mercury 0.195 mg/kg	0.15 mg/kg	n/a					
Arsenic			1.					
15-01 / 78- 85 ft	Arsenic 8.7 mg/kg	8.2 mg/kg	n/a					
I otal chlorinated pesticides	Tradit di si stati a solici den		and a set Calls have 1 an					
01-01 / /3.3- /8.3 ft	10tal chlorinated pesticides 12.3 ug/kg	6.8 ug/kg	not quantifiable, based on non-quantifiable presences of					
			4,4'-DDD, 4,4'-DDE, and					
			gamma BHC Lindane, all of					
			which were present in					
07.01/01.00.0			quantities below the MRL					
07-01 / 21- 23 ft	Total chlorinated pesticides	6.8 ug/kg	only 8.2 ug/kg is quantifiable,					
	9.0 ug/kg		based on non-quantifiable					
			presence of Endrin Aldehyde,					
			which was present in quantities below the MPI					
Total DDT			quantities below the MRL					
10101/283 333 ft	Total DDT 3.0 ug/kg	1.58 µg/kg	from 4.4' DDD and 4.4' DDE					
02-01/63-68 ft	Total DDT 3.9 ug/kg	1.50 ug/kg	not quantifiable based on					
02-01705-08 It	Total DD1 5.5 ug/kg	1.50 ug/kg	non-quantifiable components					
			of 4.4'-DDD, which was					
			present in quantities below					
			the MRL					
07-01 / 21- 23 ft	Total DDT 5.9 ug/kg	1.58 ug/kg	from 4,4'-DDD and 4,4'-DDE					
15-01 / 28 - 38 ft	Total DDT 5.4 ug/kg	1.58 ug/kg	not quantifiable, based on					
			non-quantifiable component					
			of 4,4'-DDT, which was					
			present in quantities below					

Sample test results exceeding NOAA ERLs.								
Hole / sample no.	Analyte - quantity	ERL	Note					
			the MRL					
15-01 / 58 - 68 ft	Total DDT 2.4 ug/kg	1.58 ug/kg	not quantifiable, based on non-quantifiable component of 4,4'-DDD, which was present in quantities below the MRL					
15-01 / 68 - 78 ft	Total DDT 3.5 ug/kg	1.58 ug/kg	not quantifiable, based on non-quantifiable component of 4,4'-DDD, which was present in quantities below the MRL					
4,4'-DDD								
15-01 / 58 - 68 ft	4,4'-DDD 2.4 ug/kg	1.0 ug/kg	not quantifiable, present in quantities below the MRL					
15-01 / 68 - 78 ft	4,4'-DDD 3.5 ug/kg	1.0 ug/kg	not quantifiable, present in quantities below the MRL					
4,4'-DDE			· ·					
07-01 / 21- 23 ft	4,4'-DDE 2.5 ug/kg	2.2 ug/kg	n/a					
4,4'-DDT	· · · · · · · · · · · · · · · · · · ·							
07-01 / 21- 23 ft	4,4'-DDT 3.4 ug/kg	2.3 ug/kg	n/a					
15-01 / 28 - 38 ft	4,4'-DDT 3.4 ug/kg	5.4 ug/kg	not quantifiable, present in quantities below the MRL					
Fluorene (a PAH)								
01-01 / 73.3- 78.3 ft	Fluorene 28 ug/kg	19 mg/kg	n/a					
2-Methylnapthalene (a P	AH)							
05-01 / 18- 23 ft	2-Methylnapthalene 88 ug/kg	70 ug/kg	n/a					

Gradation. Gradation tests were run on a number of intervals in all borings; 83 samples in all (see logs, Reclamation, 2002). Gradation is of value to learn if sediment would be compatible with the sediments of a sediment-starved beach targeted for nourishment. Target beaches have not yet been selected at this point in the study. When they are, their sediment gradation profiles will be compared here to the gradation test results. As per EPA, additional gradation sampling would be done during preparation of materials for shipment to any beach.

Suitability of impounded sediments for upland disposal. All of the non-beach nourishment applications under consideration for Matilija Reservoir impounded sediments fall under the heading of "upland disposal", including:

- terracing of sediments on one of the reservoir banks;
- land-fill cover and other utilitarian landfill uses;
- land-fill disposal;
- commercial stone and aggregate products production or use as agricultural soil.

According to the EPA, suitability of the sediment for upland disposal is determined through this process:

- the material must be shown not to be classified as hazardous waste, as per Title 22 of the CCR (California Code of Regulations)¹⁰;
- if tests show potentially troublesome contaminants, leachate tests are in order;

¹⁰ Title 22 of the California Code of Regulations defines hazardous waste in Division 4.5, Chapter 11, Article 1, Sub-section 66261.3.

- a landfill still can accept the material for disposal if it is hazardous waste, provided it is informed prior to acceptance and provided it is authorized to accept hazardous waste;
- for a landfill to accept impounded sediments, they would have to be at least 50% solids, so dewatering prior to shipment would be necessary (Michael Lyons, EPA, personal commun. to Mark Chatman, USACE-Geotech, 18 July 2001).

Examination CCR Title 22 clearly reveals that the regulation draws on Code of Federal Regulations (CFR) 40 CFR, Part 261, so the cited definitions in this report are drawn from 40 CFR, Part 261. Regulation 40 CFR, Part 261 requires 60 pages to define hazardous waste; an attempt to condense the definition into those parts applicable to study area sediments follows.

Test results compared to 40 CFR, Part 261 definitions. Hazardous wastes exhibit ignitability, corrosivity, reactivity, or toxicity characteristics (40 CFR, pp. 50-53).

Concerning ignitability, Reclamation's 2001 drill holes numbered 3, 4, 5, 6, and 7 (see fig. 6) all encountered natural methane gas pockets below the water level on the current "delta front". Methane can be ignited and is explosive in certain concentrations. Study of the gas determined its source is rotting vegetation (Reclamation, 2002). This natural product should off-gas as impounded sediments are dewatered. Off-gassing occurs naturally from the sediment pile now, even under the water: bubbles of methane are commonly seen rising to the water surface in the reservoir.

Concerning corrosivity, excavation for upland disposal would expose the currently submerged, sediments to the atmosphere and meteoric waters. Some of these sediments have some sulfide content, as is to be expected in a chemically reducing environment with organic content. It was considered that these materials potentially might contain enough sulfides to acidify meteoric waters passing through them if they were to be exposed to the air, as in under draining and excavation for transport and disposal. Therefore, tests for calcium-carbonate content, total sulfides, and water-soluble sulfides were run on all samples. Sulfide is present, but calcium carbonate also is present in considerable amounts. Any acid formed is expected to be neutralized by the calcium carbonate.

No characteristics that would qualify as reactivity are known.

Concerning toxicity, specific regulatory limits for toxicity contaminants are listed in 40 CFR Part 261 (p. 52), as reproduced in the chart below; these limits are for LEACHATES gathered subsequent to leachate tests. No such tests have been performed on Matilija Reservoir samples. The table serves to clarify which of the toxicity-determining substances are present in samples collected to date and which substances were not searched for in samples collected to date:

Maximum leachate concentrations for toxicity determination								
Contaminant	Regulatory limit All reservoir samples (m/L)		Some reservoir	No reservoir				
	(m/L) (mg/L = mg/kg)	constituent	substance	this substance				
Barium	100.0	none tested	unknown	unknown				
Benzene	0.5	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil						

Maximum leachate concentrations for toxicity determination								
Contaminant	Regulatory limit	All reservoir samples	Some reservoir	No reservoir				
	(m/L)	tested for this	samples contain this	samples contain				
	(mg/L = mg/kg)	constituent	substance	this substance				
Cadmium	1.0	X see metals list	X in all samples					
Carbon tetrachloride	0.5	none tested	unknown	unknown				
Chlordane	0.03	X see pesticides list	X in one sample	unino () n				
Chlordane	0.05	M see pesticides list	only					
Chlorobenzene	100.0	none tested but all	unknown	unknown				
emorobenzene	100.0	tested for TrPH and	ulikilowil	ulikilowii				
		grease/oil						
Chloroform	60	none tested	unknown	unknown				
Chromium	5.0	V soo motols list	V in all complex	ulikilowii				
ciriointum o Crosol	200.0	A see inclus list	A in an samples	unknown				
0-Clesol	200.0	tosted for TrDH and	ulikilowil	ulikilowii				
		rested for firff and						
m Graad	200.0	grease/oli						
III-Clesol	200.0	tosted for TrDII and	unknown	unknown				
		grease/oil						
<u> </u>	200.0	grease/oll	1	1				
p-Cresol	200.0	none tested but all	unknown	unknown				
		tested for IrPH and						
	200.0	grease/oil	1	1				
Cresol	200.0	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil	-	-				
2, 4 D	10.0	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil	se/oil					
1, 4-Dichlorobenzene	7.5	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil	grease/oil					
1, 2-Dichloroethane	0.5	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil						
1, 1-Dichloroethylene	0.7	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil						
2, 4-Dinitrotoluene	0.13	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil						
Endrin	0.02	X see pesticides list		Х				
Heptachlor (& its epoxide)	0.008	X see pesticides list		Х				
Hexachlorobenzene	0.13	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil						
Hexachlorobutadiene	0.5	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil						
Hexachloroethane	3.0	none tested but all	unknown	unknown				
		tested for TrPH and						
		grease/oil						
Lead	5.0	X see metals list	X in all samples					
Lindane	0.4	X see nesticides list		Х				
Mercury	0.2	X see metals list	X in all samples					
Methoxychlor	10.0	X see pesticides list	2x in un sumptes	x				
Methyl ethyl kotono	200.0	none tested but all	unknown	unknown				
wiemyr emyr ketone	200.0	tested for TrDU and	ulikilowil	unknown				
		grana/oil						
Nitrohongono	2.0	gicase/011	untracum	untracura				
muobenzene	2.0	tosted for TrDU and	unknown	UIIKIIOWII				
		rested for fifth and						
	1	grease/011	1					

Maximum leachate concentrations for toxicity determination								
Contaminant	Regulatory limit (m/L) (mg/L = mg/kg)	All reservoir samples tested for this constituent	Some reservoir samples contain this substance	No reservoir samples contain this substance				
Pentachlorophenol	100.0	X see pesticides list		X (of those tested)				
Pyridine	5.0	none tested	unknown	unknown				
Selenium	1.0	X see metals list	X in all samples					
Silver	5.0	X see metals list	X in all samples					
Tetrachloroethylene	0.7	none tested but all tested for TrPH and grease/oil	unknown	unknown				
Toxaphene	0.5	X see pesticides list		Х				
Trichloroethylene	0.5	none tested but all tested for TrPH and grease/oil	unknown	unknown				
2, 4, 5-Trichlorophenol	400.0	X see phenols list		X (of those tested)				
2, 4, 6-Trichlorophenol	2.0	X see phenols list		X (of those tested)				
2, 4, 5-TP (Silvex)	1.0	none tested	unknown	unknown				
Vinyl chloride	0.2	none tested	unknown	unknown.				

40 CFR (pp. 53-58) lists numerous other hazardous wastes defined in terms of the industrial processes from which they were derived. Primarily these are spent halogenated and non-halogenated solvents, electroplating sludges and pickling solutions, filters and purification wastewaters, petroleum industry sludges, and some leachates. Since these industrial processes did not take place in the watershed, the list does not apply to Matilija Reservoir sediments.

Another 12 pages of discarded chemical products, container residues, and spill residues are listed in 40 CFR (pp. 59-71) as additional hazardous materials. These are not considered applicable to Matilija Reservoir

Assessment of results. Regarding hazardous materials classification and the status of Matilija Reservoir sediments. There is no evidence to support classifying any of the sediments sampled to date as hazardous materials. It is recommended that some bulk sampling leachate tests be performed at the time of dewatering and prior to any excavation to verify that none of the leachate standards listed in the chart above are exceeded by the sediments.

Cited references for text and for attachments.

- Bowen, O. E., 1966, Limestone, dolomite and lime products, *in* Mineral resources of California: California Division of Mines and Geology Bulletin 191, pp. 221-233.
- Dibblee, T. W., Jr., 1975, Geologic map of the Matilija quadrangle, California: US Geological Survey Open File Report 82-75, 1:24,000-scale map.
- Lambeth, R. H., 1982, Mineral resources of the Matilija RARE II Area (no. 5129), Ventura and Santa Barbara Counties, California: U.S. Bureau of Mines Open File Report, (Mineral Land Assessment Series) MLA 64-82, 13 pp., 1 pl.

- Long, E. R., D. D. MacDonald, S. L. Smith, and F. D. Caldert, 1995, Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments: Environmental Management, vol. 19:81-97.
- Lowe, D. R., 1969, Santa Margarita Formation (upper Miocene), upper Sespe Creek area, Ventura County, California, in Field trip guidebook, SEPM, Pacific Coast Section, October 17-17, 1969.
- NOAA (M. F. Buchman), 1999, NOAA Screening Quick Reference Tables: NOAA HAZMAT Report 99-1, Seattle WA, Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration.
- PSSDA, 2000, Dredged material evaluation and disposal procedures, a users manual for the Puget Sound Dredged Disposal Analysis (PSSDA) Program: unpubl. manual, U.S. Army Corps of Engineers, Seattle District, U.S. Environmental Protection Agency, Region 10, Washington Department of Natural Resources, and Washington Department of Ecology, February 2000.
- Troxel, B. W., M. C. Stinson, and C. W. Chesterman, 1957, Uranium, *in* Mineral commodities of California: California Division of Mines Bulletin 176, pp. 669-687.
- Tucker, W. B., and R. J. Sampson, 1932, Ventura County, *in* Mining in California: California Division of Mines Report 28, pp. 247-277.
- Reclamation (*US Dept. of Interior, Bureau of Reclamation*), 2002, Matilija Dam ecosystem restoration feasibility study, geotechnical field investigations, Ventura County, California: unpublished document prepared by Bureau of Reclamation, Mid-Pacific Regional Office, Division of Design and Construction, Field Operations Branch, Geology Section, March 2002, various pagination.
- Weber, F. H., Jr., G. B. Cleveland, J. E. Kahle, E. F. Kiessling, R. V. Miller, M. F. Mills, D. M. Morton, and B. A. Cilweck, 1973, Geology and mineral resources of southern Ventura County, California: California Division of Mines and Geology Preliminary Report 14, 102 pp., 5 pl.

Attachments

- **1** Sampling and Analysis Plan
- 2 List of analytical labs performing sediment quality tests
- **3** Results of sediment quality tests
- 4 EDR, Inc. regulatory database records search results

Attachment 1 begins on following page

US Army Corps of Engineers

Los Angeles District Geotechnical Branch

Sampling and analysis plan (SAP) for Matilija Dam impounded sediment characterization, Matilija Creek watershed, Ventura County, California

(Matilija Dam, 30 Jan. 2001)

By US Army Corps of Engineers, Los Angeles District Engineering Division, Geotechnical Branch Geology and Investigations Section 911 Wilshire Blvd, Los Angeles, CA 90017

(mailing addr: CESPL-ED-GG, PO Box 532711, LA, CA 90053-2325 email: <u>mchatman@spl.usace.army.mil</u> ph. 213-452-3585)

17 July 2001

1.0. Objective. The reservoir area behind the dam (originally with 7,000 ac-ft capacity) has nearly filled with impounded sediment, having some 300 to 400 ac-ft of storage left (see fig. 2, on p. 3, supplied by U.S. Fish and Wildlife Service--USFWS). The concrete, thin-arch, 190-fttall dam, built in 1947-1948, suffers from cracked and weakened concrete due to alkalisilica reaction (see fig. 1). To reduce stresses, it has been lowered by notching by 30 ft along the crest (see cover photo). By design, flood-stage spills are simply over that crest. Previous

evaluators have stated that at some point in the future this dam may become a public safety issue due to the concrete deterioration.

The current issue is protection of steelhead trout, to be accomplished via re-opening the 55 sq mi of Matilija Creek watershed above the dam to steelhead spawning. At least some of that area traditionally was used for spawning by the species, and its numbers have dwindled markedly since the dam was built (documented in other project documents).

USACE (US Army Corps of Engineers, Los Angeles District) was called to assistance by Ventura County Flood Control District, and USACE-Geotech (the Geotechnical Branch) subsequently has been tasked with designing and

implementing exploration, testing, and engineering analysis that will supply answers regarding all of the alternatives under consideration:

Figure 1.--Cracked concrete in one 6-ft-tall construction lift, on dam's left half by the powerhouse, close-up (top) and distant views.

Figure 2.--The Matilija reservoir in April 2000. See note added at top of graphic. Original graphic from USFWS, Ventura Ofc., and was intended originally to show wetlands types and boundaries in the reservoir and surrounding areas. Use zoom in WORD for more detail.

00

Figure 3.--Composite photo of impounded sediments, view to the south. Scanned from Reclamation's Feb. 2000 exploration report.

NUMBER OF DRILL HOLE	CURRENT GROUND SURFACE ELEVATION	1947 GROUND SURFACE ELEVATION (1)	∆ (FT) (2)	TOTAL DEPTH (FT) (3)	DEPTH WATER (FT)			
DRILL HOLES DRILLED IN RESERVOIR POND (BARGE-MOUNTED DRILL RIG)								
1	1068	980	88	100	18			
2	1071	1000	71	80	15			
3	1073	1015	58	65	13			
4	1074	1015	59	70	12			
5	1077	1020	57	65	9			
6	1075	1023	52	60	11			
7	1081	1020	61	70	5			
DRILL HOL	ES DRILLED UP	STREAM OF RESE	RVOIR PO	ND (MOBILE I	DRILL RIG)			
8	1098	1038	60	70				
9	1095	1035	60	70				
10	1095	1042	53	60	NI/A			
11	1100	1054	46	55	IN/A			
12	1110	1060	40	50				
13	1106	1076	30	40				
14	1108	1086	22	30				
TOTAL LI	NEAL FEET OF	DRILLING		885				

NOTES:

(1) The 1947 ground surface is the approximate pre-dam ground surface.

(2) The difference in elevation between the current and the 1947 ground surfaces at the drill hole location.

(3) The total depth should extend each drill hole approximately 5 to 10 feet deeper than the 1947 (pre-dam) ground surface.

0

Figure 5.--Proposed drill depths. From pre-drilling work on the project area by Reclamation. Refer to fig. 4 for hole locations.

- from fish ladders to dam demolition, including engineering the demolition;
- from sediment trucking, conveyor transport, or sluicing to off-site locations, to on-site terracing and impounding; to natural erosion transport;
- from beach nourishment use of the sands to wasting and landfilling of all the materials; encompassing also potential segregation of salable aggregate.

For the purposes of this SAP, the initial focus of USACE-Geotech is to characterize that sediment and develop information that would assist in deciding what to do with it. Sediment characteristics, primarily gradation, will have to be determined, as will the identity of insediment contaminants, if any. Reclamation (U.S. Dep. of Interior, Bureau of Reclamation) estimated 6 million cu yds of sediments are impounded behind Matilija Dam. A view of the surface area to be drilled is in fig. 3. An approximate array of drill holes and drill depths currently under consideration are shown in figs. 4 and 5.

2.0. *Contaminant assessment plan.* The USACE-Geotech assessment is comprised of three main tasks:

a) Background data search and analysis, including:

- NCRS (Natural Resource Conservation Service) records search for evidence of past agricultural activity in the watershed, upstream from the project area;
- Research of the geologic literature of the watershed, to see if there is any basis to anecdotal reports of past mining in the watershed; this may include site visit to some mines or prospects;
- A contracted "corridor search" of approximately 70 hazardous materials databases, followed by USACE-Geotech analysis of the dumped data;
- Results of Dec. 1999 testing by Reclamation;
- b) New testing of additional samples of the impounded sediment;

c) A technical analysis report of the results of a) and b), above, with discussion of the various end-use applications of the sediments; the report to be forwarded for regulatory approval in the event that a certain end-use is selected in the planning and feasibility process.

2.1. Anticipated sampling and testing regime. The need for knowledge about the contaminants in the sediments, or lack thereof, is to allow decisions to be made about end-use of the sediments. Since there are a mixture of cobbles/boulders, with sands and silts, and probably some clays, there are few end uses that can take all the materials as they are, unsorted. The only alternatives currently under consideration that can accommodate such a gradation are phased, natural stream erosion of the sediments, and impounding the sediments in terraces on the south side of the reservoir (and even the impounding option will require removal of the largest of the alluvial materials, such as large boulders). Therefore, the detailed logging of the subsurface by on-site geologists will determine, as drilling proceeds, the best intervals for sampling. Discreet finergrained sediment zones (silts and clays) will be sampled because they are most likely to be the traps of any contaminants. Discreet sandy zones also will be sampled as the sand fraction is the most likely to be assigned and end-use of beach nourishment. Alluvial aggregate greater than $\frac{3}{4}$ inch in size will not be sampled. Zones of coarse material (cobbles and boulders), which will be brought up by the drilling process as crushed rock, will not be sampled. This will require flexibility in the numbers and locations of the samples. If, for example, logging of the boreholes

demonstrates that the materials below the existing reservoir pool are nearly all silts, then they will not be useful for beach nourishment, and testing will shift more to area where sands are being encountered. Similarly, if, for example, the non-inundated areas of impounded sediments are shown to have much more cobble and boulder fractions than anticipated, their utility as beach nourishment will be reduced and their potential to trap contaminants will be reduced; again, sampling would be redirected to other more useful locations.

In reality, samples for contaminants will be collected at least as frequently as samples for engineering/physical parameters, but due to economics (a cost of \$1,652.36 for the full suite of tests, per sample, and a cost of \$724.65 per sample for the abbreviated test suite-see below for tests), composting of sample material will have to take place. For the purposes of estimating, a sampling plan of thirty total samples has been selected and budgeted. To assure that sufficient materials are collected, samples will be taken approximately every 20 ft and stored on ice, then combined later as the geology and logging clarifies gradational trends in the subsurface. Crosshole compositing will be used if beneficial to the project goals. Of the 30 samples, it is anticipated that four will be tested for the full suite of contaminants (see table 1), and that all those would be composited samples, two of the silts/clays and two of sands that appear to have potential for use on the beach. The other 26 samples would be from silt or clays or sands, as appropriate, distributed in a manner that best will characterize the subsurface materials. These 26 samples will have a reduced suite of tests: only the physical/convention tests; the metals suite; and the pesticide suite (see table 1). This abbreviated suite is based on the assumption that the results from the background data search and analysis will reveal few or no potentially problematic past land use upstream, but those potential problems that are most likely to exist in some degree would be found through this abbreviated test suite. There has been no USACE-Geotech research of past use in the watershed, but it is apparent that:

- It is encompassed by the Los Padres National Forest, where industry likely would not be permitted to operate;
- Past agricultural use would be logical to anticipate but acreage involved probably would be small due to the narrowness of the valley.

Reclamation, in their April 2000 appraisal (p. 44) states, "there are no known sources of artificial contamination, such as mining, agriculture, or industry upstream of Matilija Reservoir." In addition, from past experience, the typical anecdotal report of past "mining" in an area turns out to be a small prospect pit or underground tunnel in rock wherein the natural mineral occurrence exposed at the surface has significantly more responsibility for the presence of analytes in the watershed as does the pit or other results of mining. But this potential problem too could be detected via the USACE-Geotech abbreviated test suite.

Hot springs. One other condition that could impact the testing results is the presence of hot springs in the watershed, so some potentially deleterious minerals may be migrating in the overall system, but not necessarily in concentrations that exceed tolerable limits. It is anticipated that the metals suite and the physical/conventional test suite will identify any problems in these suites of analytes. Very limited test results from Matilija Hot Springs (just d/s of the dam) water samples from 1976 are:

- mean pH of 8.1; range of 7.1 to 8.4;
- mean alkalinity of 224; range of 176-312;
- 0

	1									
		Sedim	ent Quality	Guidelines (SQGs)					_
							Sam	ole Testing Re	esults (3)	
							Sun	sie resting ite	isuns	
Me	hod	EDI	EDM	CI	м					
lytical Rend	rting	EKL	EKM	SL	ML					
hod ⁽¹⁾ Lin	nit Units	(Long et	al., 1999)	(PSDDA	A, 1998)					
A 2540B 0.	1 %									
2540G 0.0)1 %									
9045C 0.	1 pH uni	ts								
350.1M 0.	2 mg/kg	g								
9060M 50	0 mg/kg	g								
umb 0.	1 mg/kg	g								
umb 0.	1 mg/kg	g								
413.2 1) mg/kg	5								
418.1 6	mg/kg	ç.								
	0.0									
6020 0.0	5 mg/kg	g		15	200					
6020 0.	5 mg/kg	8.2	70	57	700					
6020 0.0	05 mg/kg	1.2	9.6	5.1	14					
6020 0.	2 mg/kg	81	370							
6020 0.	1 mg/kg	34	270	390	1,300					
6020 0.0	05 mg/kg	46.7	218	450	1,200					
7471A 0.0)1 mg/kg	0.15	0.71	0.41	2.3					
6020 0.	2 mg/kg	g 20.9	51.6	140	370					
7741 0.	7 mg/kg	ŗ								
6020 0.	02 mg/kg	g 1	3.7	6.1	8.4					
6020 0.	5 mg/kg	g 150	410	410	3,800					
<u> </u>										
8081A	ug/kg	6.8	108.1	56.9	69.0					
8081A	ug/kg			10						
8081A	ug/kg									
8081A	ug/kg			10						
8081A	ug/kg									
8081A	ug/kg									
8081A	ug/kg	0.02	8.0	10						
8081A	ug/kg									
8081A	ug/kg									
8081A	ug/kg									
8081A	ug/kg									
	Iytical hod ⁽¹⁾ Met Repo Lir 2540B 0. 2540G 0.0 9045C 0. 350.1M 0. 9060M 50 amb 0. 413.2 10 418.1 6 6020 0.0 6020 0.0 6020 0.0 6020 0.0 6020 0.0 6020 0.0 6020 0.0 6020 0.0 48020 0.0 8081A 1 8081A 1	Method Reporting Limit Units 2540B 0.1 % 2540G 0.01 % 9045C 0.1 pH units 350.1M 0.2 mg/kg 9060M 500 mg/kg amb 0.1 mg/kg 413.2 10 mg/kg 418.1 6 mg/kg 6020 0.05 mg/kg 6020 0.5 mg/kg 6020 0.1 mg/kg 6020 0.5 mg/kg 6020 0.1 mg/kg 6020 0.5 mg/kg 6020 0.5 mg/kg 6020 0.5 mg/kg 6020 0.5 mg/kg 7741 0.17 mg/kg 6020 0.5 mg/kg 6020 0.5 mg/kg 8081A 1 ug/kg 8081A 1 ug/kg 8081A 1 ug/kg	Iytical hod ⁽¹⁾ Method Reporting Limit Units ⁽²⁾ ERL (Long et (Long et 2540B 0.1 % 9 2540G 0.01 % 9 9045C 0.1 pH units 10 350.1M 0.2 mg/kg 9060M 9060M 500 mg/kg 11 9060M 500 mg/kg 11 413.2 10 mg/kg 1.2 418.1 6 mg/kg 1.2 6020 0.05 mg/kg 1.2 6020 0.5 mg/kg 1.2 6020 0.5 mg/kg 1.2 6020 0.1 mg/kg 34 6020 0.5 mg/kg 1.2 6020 0.15 mg/kg 1.5 6020 0.2 mg/kg 1.5 6020 0.2 mg/kg 1.5 6020 0.2 mg/kg 1.5 6020 0.5 mg/kg	Method Reporting hod ⁽¹⁾ Method Limit ERL ERM (Long et al., 1999) 2540B .2540G 0.1 %	Method Reporting hod $^{(1)}$ Method Reporting Limit Sediment Quality Guidelines (ERL ERM SL $(Long et al., 1999)$ (PSDD/	Iytical hod (1) Method Reporting Limit Sediment Quality Guidelines (SQGs) ERL ERM SL ML (Long et al., 1999) (PSDDA, 1998) (PSDDA, 1998) $2540B$ 0.1 % (Long et al., 1999) (PSDDA, 1998) $2540G$ 0.01 % (Long et al., 1999) (PSDDA, 1998) $2540G$ 0.1 pH units (Particle al., 1999) (PSDDA, 1998) $2540G$ 0.1 pH units (Particle al., 1999) (PSDDA, 1998) $2540B$ 0.1 mg/kg (Particle al., 1999) (PSDDA, 1998) 210 mg/kg (Particle al., 1999) (PSDDA, 1998) 211 96 (Particle al., 1999) (PSDDA, 1998) 200 mg/kg (Particle al., 1999) (PSDDA, 1998) 312 10 mg/kg (Particle al., 1999) (PSDDA, 1998) 413.2 10 mg/kg (Particle al., 1999) (PSDDA, 1998) 6020 0.5 mg/kg 1.2 9.6 5.1 14	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Method hof $^{(1)}$ Method Reporting Limit Sediment Quality Guidelines (SQGs) Sam 1 (Ling et al., 1999) ERL ERM SL ML 1 (Ling et al., 1999) (PSDDA, 1998) Image: Comparison of the compar	Method (1) Method Reporting Limit ERL ERM SL ML Sample Testing Reserves 2540B 0.1 % (Long et al., 1999) (PSDDA, 1998) Image: Constraint of the second secon	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Table 1.—USACE contaminant test suite for sediment. This is the full suite. Table prepared by G. Dombrosky.

Table 1.—USACE contam	ninant test suite for	sediment. 1	This is the full suite. Table prepared by	
G. Dombrosky.				
-			Sediment Quality Guidelines (SOGs)	

				Sedim	ent Quality	Guidelines	(SQGs)					
								Sample Testing Results (3)				
		Method		ERL	ERM	SL	ML					
	Analytical	Reporting	xx · (2)									
	Method (*)	Limit	Units (2)	(Long et	al., 1999)	(PSDD)	A, 1998)			<u></u>	<u></u>	
gamma-BHC Lindane	EPA 8081A	1	ug/kg			10						
gamma-Chlordane	EPA 8081A	1	ug/kg									
Heptachlor	EPA 8081A	1	ug/kg			10						
Toxaphene	EPA 8081A	10	ug/kg									
Total DDT ⁽³⁾	EPA 8081A	1	ug/kg	1.58	46.1	6.9	69.0					
4,4'-DDD	EPA 8081A	1	ug/kg	1.0	7.0				-			
4,4'-DDE	EPA 8081A	1	ug/kg	2.2	27							
4,4'-DDT	EPA 8081A	1	ug/kg	2.0	20							
ORGANOTINS	_			-								
Total Organotins (4)			ug/kg									
Monobutyltin	Krone	1	ug/kg									
Dibutyltin	Krone	1	ug/kg									
Tributyltin	Krone	1	ug/kg									
Tetrabutyltin	Krone	0.5	ug/kg			0.15 (7)						
PHTHALATES												
Total phthalates (4)			ug/kg			23,170						
Bis (2-ethylhexyl) phthalate	EPA 8270C	6.7	ug/kg			8,300						
Butyl benzyl phthalate	EPA 8270C	6.7	ug/kg			970						
Diethyl phthalate	EPA 8270C	6.7	ug/kg			1,200						
Dimethyl phthalate	EPA 8270C	6.7	ug/kg			1,400						
Di-n-butyl phthalate	EPA 8270C	6.7	ug/kg			5,100						
Di-n-octyl phthalate	EPA 8270C	6.7	ug/kg			6,200						
POLYCHLORINATED BIPHE	NYLS (PCB)											
Total PCBs (4)			ug/kg	22.7	180	130	3,100					
Aroclor 1016	EPA 8082	10	ug/kg									
Aroclor 1221	EPA 8082	20	ug/kg									
Aroclor 1232	EPA 8082	10	ug/kg									
Aroclor 1242	EPA 8082	10	ug/kg									
Aroclor 1248	EPA 8082	10	ug/kg								1	
Aroclor 1254	EPA 8082	10	ug/kg									
Aroclor 1260	EPA 8082	10	ug/kg									
POLYNUCLEAR AROMATICS	5 HYDROCARBO	ONS (PAH)										
Total PAHs ⁽⁴⁾		ì	ug/kg	4,022	44,792							
2-Methylnaphthalene	EDA 9270C	2		70	670	670	1.000					
Aggraphthong	EPA 82/0C	3	ug/kg	/0	0/0	0/0	1,900					
Acenaphthene	EPA 8270C	2	ug/kg	16	500	500	2,000			1	1	

				Sediment Quality Guidelines (SQGs)							
								Sam	ple Testing Re	esults (3)	
	Applytical	Method		ERL	ERM	SL	ML				
	Method ⁽¹⁾	Limit	Units (2)	(Long et	al., 1999)	(PSDDA	A, 1998)				
Acenaphthylene	EPA 8270C	2	ug/kg	44	640	560	1,300				
Anthracene	EPA 8270C	2	ug/kg	85.3	1,100	960	13,000				
Benzo(a)anthracene	EPA 8270C	2	ug/kg	261	1,600	1,300	5,100				
Benzo(a,e)pyrene	EPA 8270C	0.8	ug/kg	430	1,600	1,600	3,600				
Benzo(b)fluoranthene	EPA 8270C	2	ug/kg			1,600	4,950				
Benzo(k)fluoranthene	EPA 8270C	2	ug/kg			1,600	4,950				
Benzo(g,h,i)perylene	EPA 8270C	2	ug/kg			670	3,200				
Chrysene	EPA 8270C	2	ug/kg	384	2,800	1,400	21,000				
Dibenzo(a,h)anthracene	EPA 8270C	2	ug/kg	63.4	260	230	1,900				
Fluoranthene	EPA 8270C	2	ug/kg	600	5,100	1,700	30,000				
Fluorene	EPA 8270C	2	ug/kg	19	540	540	3,600				
Indeno(1,2,3-cd)pyrene	EPA 8270C	0.8	ug/kg			600	4,400				
Naphthalene	EPA 8270C	2	ug/kg	160	2,100	2,100	2,400				
Phenanthrene	EPA 8270C	2	ug/kg	240	1,500	1,500	21,000				
Pyrene	EPA 8270C	2	ug/kg	665	2,600	2,600	16,000				
PHENOLS	-	i							1		
Total Phenols			ug/kg			1582	5777				
2,4-Dimethylphenol	EPA 8270C	33	ug/kg			29	210				1
2-Methylphenol	EPA 8270C	20	ug/kg			63	77				1
4-Methylphenol	EPA 8270C	33	ug/kg			670	3,600				ĺ
Pentachlorophenol	EPA 8270C	33	ug/kg			400	690				1

Table 1.—USACE contaminant test suite for sediment. This is the full suite. Table prepared by G. Dombrosky.

Notes:
Table 1.—USACE contaminant test suite for sediment. This is the full suite. Table prepared by G. Dombrosky.

			Sedim	ent Quality	Guidelines (SQGs)						
							Sample Testing Results (3)					
Analytical	Method Reporting		ERL	ERM	SL	ML						
Method ⁽¹⁾	Limit	Units (2)	(Long et	al., 1999)	(PSDDA	A, 1998)						

(1) Analytical Method

EPA = United States Environmental Protection Agency

EPA Methods are EPA SW-846, 1994 3rd Edition or EPA 600/4-79-020, March 1983

APHA = American Public Health Association

APHA Method is APHA Standard Methods, 18th Edition, 1992

Plumb = Procedure for Handling and Chemical Analysis of Sediment and Water Samples. Tech Rep. USEPA/CE-81, Russell H.

Plumb, Jr., 1981.

(2) Units: mg/kg = milligrams per kilogram, parts per million (dry weight unless otherwise noted)

ug/kg = micrograms per kilogram, parts per billion (dry weight unless otherwise noted)

- (3) ND = not detected at or above lowest Method Reporting Limit value for the particular compound(s) of interest
- (4) Total Chlorinated Pesticides, Total Organotins, Total Phthalates, Total PCBs, Total PAHs, and Total Phenols = sum of named compounds and their derivatives
- (5) Total DDT = sum of 4,4'-DDE; 4,4'-DDD; and 4,4'-DDT
- (6) Total Solids is the average of the three results computed by each of the laboratories. Individual results are available in Attachment 1A.
- (7) Tributyltin (interstitial water)

(8) Reporting limits for analyses of Phthalates on Composite #3 are 2 ug/kg for Bis(2-ethylhexyl)phthalate, 13 ug/kg for Butyl Benzylphthalate, and 0.6 ug/kg for Di-n-octylphthalate.

- (9) Reporting limits for analyses of PAHs on Composite #3 are 6.7 ug/kg, except for analyses for Benzo(g,h,i)perylene, Dibenzo(a,h)anthracene, Fluoranthene, and Indeno(1,2,3-cd)pyrene, which was 13 ug/kg
- (10) Reporting limits for analyses of Phenols on Composite #3 are 30 ug/kg for 2,4-Dimethylphenol and 4-Methylphenol, 20 ug/kg for methylphenol, and 9 ug/kg Pentachlorophenol

Figure 6.—Reclamation's sample locations from Dec. 1999. "MDA" prefixes are land based borings, "MDW" prefixes are from beneath reservoir pool. Scanned from Reclamation's Feb. 2000 exploration report. Use zoom feature in WORD to see more detail.

0

• mean sulfate concentrations of 244 mg/l; range of 208-282.

(data from Reclamation's April 2000 appraisal report, pp. 44-45; test by Ventura County).

Bacteria. Data will be obtained from MESA (Matilija Environmental Study Area)or USFWS (U.S. Fish and Wildlife Service) on fecal coliform data from water tests in the reservoir. There are several homes upstream of the dam and they are reported by MESA to all be on septic systems for sewage disposal. The results would be no more than an advisory if the coliform levels are high. There is no coliform component of the beach compatibility test suite used by USACE.

Sampling and testing with regard to the two primary impounded sediment disposal considerations. Regardless of the means employed to move¹¹ the impounded sediments behind Matilija dam, ultimately, they will be "disposed" of by one of two means: 1) beach nourishment; or 2) stabilizing or impounding them in some upland area (e.g., landfill cover, aggregate, fill, etc.). The current exploration and testing effort is designed to characterize those sediments regarding their suitability for beach nourishment and upland disposal. Completion of the testing suite shown in table 1 will provide knowledge on whether the contaminants in the sediments, if any, would preclude their use as beach nourishment (note the *SQGs*, or tolerable contaminant levels listed in table 1 for each applicable analyte). Completion of the gradation characterizations that will be performed on collected samples will address the particle size of the sediments, another essential criteria for beach nourishment. According to EPA representative Steven John, Los Angeles:

Materials to be used for beach nourishment are typically (by Corps and EPA policy) required to have no greater than 10% more fine- grained materials than the receiver site. Typical southern California beaches are 95-99% sand; materials used as nourishment would have to be 85-89%, at minimum, sand. Materials discharged to the nearshore environment, where existing sediment has greater quantities of fine grained materials, can include more fine-grained materials as the winnowing effect of the waters removes fine-grained components while moving coarser grained materials to the beach. EPA typically does not allow materials with less than 70-75% sand to be used for nourishment (either direct beach deposit or nearshore discharge). If there are no deposits of material behind Matilija Dam that are predominantly sand, or if screening of deposits to remove fine grained components is not practicable, use of Matilija sediments for beach nourishment (beach or nearshore) may not be possible

...additional characterization or confirmatory testing (physical and chemical) may be necessary during the excavation process. Provided no elevated levels of contaminants of concern are discovered during the initial stages of confirmatory testing, this testing element may be eliminated at some future date. Quality control for physical compatibility would be retained. (from correspondence by John to US Army Corps of Engineer's Mark Chatman, 15 March 2001).

For *upland disposal* options, criteria of the California Regional Water Quality-Control Board and the State Department of Toxic Substances Control (DTSC) are applicable. Documentation of the

¹¹ Methods considered to date include handling with earth-moving equipment to some degree and then trucking, sluicing, or conveyor transport to the ultimate disposal.

RWQCB criteria were still being sought at the time of this writing. The DTSC oversight on upland disposal applies only if the material is *hazardous waste*, as per the definition of hazardous waste in the California Code of Regulation, Title 22, Div. 45, Chapter 11 (data from DTSC Field Duty Officer Andre Amy, Glendale Office, as per phone conversation with US Army Corps of engineer's Mark Chatman, 17 July 2001.

3.0. <u>Sampling protocols</u>. Due to the chosen drilling and core recovery method (continuous dry core from inside a HSA), sleeved samples will not be recovered. Samples for environmental tests will be cut from these cores as soon as is practicable after they are recovered and removed from the core device. Exposure time, once the core is removed from the borehole, should be minimized to avoid drying and exposure to air. Samples will be collected from the cores w/ stainless steel scraping or cutting devices, mixed in a stainless steel bow (if a composited sample), and placed directly into lab jars, as specified below. Disposable rubber gloves will be worn during sample collection. Gloves will be changed between the taking of individual samples. Clean-up of sampling tools, which will be done between collection of individual samples, will be with <u>Alquinox</u> and creek or reservoir water for the first wash, then tools and sampler will be double-rinsed with de-ionized water. Wash water will not be released into the study area, but will be collected for disposal off site. The overall objective is to minimize any cross-contamination of samples.

Quantities of samples. For each sample at least 24 oz of material will be collected in at least two separate containers. Depending on the lab actually selected to do the analysis, the volume of material and number of containers may be adjusted slightly. Samples will be placed in new, clean, pre-labeled glass containers provided by the lab. Data to be recorded on sample labels includes date, time, sampler, hole location, depth or depth range. Jars will be packed full to minimize head space

Preservation of samples. Samples will be kept in an iced cooler, maintained at 4°C., plus or minus 2°C.

Sample retention time. 7 days. See table 2, below. The practicable way of addressing retention time would be to ship every 3 or 4 days to the lab.

Table 2.—Retentio	on time and handling	g of sediment sample	es, for specific tests	suites.									
Test or suite	Retention time	Container/minimum	Temperature/	Other									
		volume of sample	preservatives										
Physical/conventional													
Total solids,14 daysGlass/In cooler, 4°C., plus or													
total volatile solids			minus 2°C./										
			No preservatives										
pH	7 days	Glass/	In cooler, 4°C., plus or										
			minus 2°C./										
			No preservatives										
Ammonia	7 days	No container type	In cooler, 4°C., plus or										
		specified/	minus 2°C./										
			No preservatives										
Total organic carbon	14 days	Glass, 8-oz, wide-	In cooler, 4°C., plus or										
		mouth w/ Teflon-lined	minus 2°C./										
		lid/	No preservatives										

Table 2.—Reten	tion time and handlin	g of sediment sampl	es, for specific tests	suites.
Test or suite	Retention time	Container/minimum	Temperature/	Other
		volume of sample	preservatives	
Total sulfides	7 days	Glass/	In cooler, 4°C., plus or	
			minus 2°C./	
			No preservatives ¹²	
Oil & grease	No limit specified	No container type	No specifications	
		specified/		
	Met	als suite (except mer	rcurv)	
9 metal analytes	6 months	Glass, 8-oz, wide-	In cooler, 4°C., plus or	
5		mouth w/ Teflon-lined	minus 2°C./	
		lid/	No preservatives	
			_	
Mercury	28 days	Glass, 8-oz, wide-	In cooler, 4°C., plus or	
		mouth w/ Teflon-lined	minus $2^{\circ}C.^{13}/$	
		lid/	No preservatives	
		<u>Organics</u>	I	
Pesticides and	14 days to extraction;	Glass, 8-oz, wide-	In cooler, 4°C., plus or	
organotins	30 days to analysis	mouth w/ Teflon-lined	minus 2°C.14/	
		lid/	No preservatives	
Petroleum	28 days	Glass 8-oz wide-	In cooler 4°C plus or	
hydrocarbons	20 4495	mouth w/ Teflon-lined	minus 2°C./	
		lid/	No preservatives	
			. F	
Phthalates, PAHs,	10 days to extraction;	Glass, 8-oz, wide-	In cooler, 4°C., plus or	
Phenols	30 days to analysis	mouth w/ Teflon-lined	minus 2°C./	
		lid/	No preservatives	
PCBs	14 days to extraction:	Glass, 8-oz, wide-	In cooler, 4°C., plus or	
	30 days to analysis	mouth w/ Teflon-lined	minus 2°C./	
	5 5 5 ~ ~	lid/	No preservatives	
Data from Final SAP,	A-2 & A-3 borrow areas for	pilot in-situ capping project	ct, Palos Verdes Shelf Supe	erfund Investigation,

March 2000, prepared primarily by Fred Schauffler, pp. 25-26. Criteria attributed to Calscience Environmental Laboratory.

Chain of custody. A chain of custody must be maintained by each individual collecting the samples. It is assumed that there will be no more than two geologists handling the samples, one on the barge-mounted rig on the reservoir, and one on the truck rig. Details for shipping from Ventura to the contract sample analysis lab in San Diego are still being developed. The lab will be:

> NREL (Navy Regional Environmental Laboratory) Public Works Center C-910 Naval Air Station North Island Bldg M-9 San Diego, CA 92135 ph. (619) 545-8431 (619) 545-0793 FAX A point of contact at the number above is:

¹² Zinc acetate recommended by Calscience Environmental Laboratory as a preservative; USACE typically does not use any preservatives on samples for this test. ¹³ USACE uses the same 4°C. temperature. Calscience Environmental Laboratory recommends freezing the sample at –18°C.

¹⁴ USACE uses the same 4°C. temperature. Calscience Environmental Laboratory recommends freezing the sample at -18°C.

Lyn Vasquez VasquezLT@PWCSD.Navy.Mil

An alternate POC is the lab director, Joe Arlauskas (619-545-8432)

The potential scenarios are: 1) USACE representative will enter the chain of custody, collect the samples from Reclamation, and take care of forwarding to the lab; or 2) a lab representative may enter the chain of custody; but most likely, 3) the samples will be shipped in coolers to the lab from Ojai, CA, or Ventura, CA. The lab will supply coolers and sample jars. USACE-Geotech will se to it that these supplies are either shipped to Reclamation in the field or will deliver them directly to the field.

Compositing. On regular intervals, about every day or every other day, logs will be examined and decisions made about compositing of sample material prior to lab analysis. Due to high cost of lab tests, intra-hole compositing will be a necessity and cross-hole compositing will be considered. The loggers of the holes will have major input into the selection and compositing of samples. With the general division of approximately 15 lab samples from the reservoir area for lab testing and another 15 for lab testing from the exposed sediments upstream of the reservoir, intervals will have to be selected such that sand units that look promising for beach nourishment are assessed for potential contaminants. Similarly, silts and clays should be evaluated for contaminants. As the drilling and logging proceeds, the stratigraphy of the impounded sediments will become more apparent. It is better to take too many samples at the beginning and develop a good way of compositing them after a day or two of experience with the logging makes subsurface trends, or lack thereof, more apparent.

QA. QA tests will be at the standard used by the selected lab.

4.0. <u>Test results from previous sampling</u>. The Bureau of Reclamation has been actively evaluating and exploring the project area since at least 1999. Reclamation's Dec. 1999 sample sites, fig. 6, consisted of 6 ten-foot-deep hand-auger borings into the downstream edge of the exposed sediments (the current delta front), and 18 samples from the sediments inundated by the reservoir pool, collected with a drop probe (collects the upper 1 foot of sediment). From the hand-auger borings 6 samples were collected from select horizons (see table 3, below); from the group of drop-probe samples, 6 were selected for testing (see table 3). Of the completed contaminant tests on these samples, those that are applicable to the USACE suite for contaminants include:

the metals suite total organic carbon sulfur (total sulfur was determined rather than total sulfides).

Specific test results have not been obtained by USACE-Geotech; Reclamation's verbal summary of their test results from their April 2000 appraisal report (p. 45) is that tests showed

• non-toxic metal concentrations;

• "sulfur concentrations just above protocol concentrations for acid mine drainage." *Gradation.* Gradations were determined for material sampled from the exposed delta front (MDA prefix, table 3, and fig. 6), and generalized as:

70-75% sand, 10-20% silt, 3-85% clay, 5-12% gravel (Reclamation's April 2000 appraisal report, p. 43). Gradations were determined for material sampled beneath the reservoir pool (MDW prefix, table 3, and fig. 9), and generalized as:

60% silt, 25% sand, 15% clay (Reclamation's April 2000 appraisal report, p. 43). Gradation tests will be performed by USACE-Geotech as a part of the current sampling program. 5.0. *The sulfur issue*. Reclamation raised a point about sulfur content of the sediments, particularly those inundated in a reducing environment below the reservoir pool: tests run to date detect the presence of sulfur. When this material is drained and exposed to air in preparation for excavation and transport, will that the sulfur oxidize and become noxious to breathe, or combine with rainwater or creek water to form H₂SO₄? Is this potential "acid mine drainage"? That potential chemical reaction needs to be addressed prior to excavations. Substantive information on this issue is being sought from the California Regional Water-Quality Control Board and the State Dept. of Toxic Substances Control. The EPA already has been queried.

existing reservoir pool, in the top 1–ft of sediments												
Sample Identification	Gradation	Moisture	Sediment Toxicity									
MDW-1	X		X									
MDW-2	X	X										
MDW-3	X	X	X									
MDW-4	X	X										
MDW-5	X	X										
MDW-6	X		X									
MDW-7	X	~										
MDW-8	X	X										
MDW-9	X	X										
MDW-10	X	X	X									
MDW-11	X											
MDW-12	X											
MDW-13	X	X	X									
MDW-14	X											
MDW-15	X											
MDW-16	X	X	X									
MDW-17	X											
MDW-18	X											

MDW-prefixed samples are from beneath the

MDA-prefixed samples are from hand-auger borings at the delta front

Auger Hole	Interval (ft.)	Gradation	Moisture	Sediment
MDA-1	1.0-2.0	X	X	
MDA-1	2.0-3.0	X	X	
MDA-1	4.0-5.0	X	X	
MDA-1	9.0-10.0	X	X	X
MDA-2	1.0-2.0	X	X	
MDA-2	4.0-5.0	X	X	
MDA-2	6.0-7.0	X	X	
MDA-2	7.0-8.0			X
MDA-2	8.0-9.0	X	X	
MDA-3	1.0-2.0	X	X	
MDA-3	4.0-5.0	X	X	
MDA-3	6.0-7.0			X
MDA-3	7.0-8.0	X	X	
MDA-4	1.0-2.0	X	X	
MDA-4	6.0-7.0	X	X	
MDA-4	9.0-10.0	X	X	
MDA-4	10.0-10.5			X
MDA-5	0.0-1.0	X	X	
MDA-5	5.0-6.0	X	X	
MDA-5	7.0-8.0	X	X	
MDA-5	8.0-9.0			X

Table 3.--Sampled horizons, Reclamations 1999 samples. Data from Reclamation's Feb. 2000 exploration report.

Attachment 2Analytical labs performing chemical tests on impounded sediment samples,											
Matilija Dam.											
Test	Analytical lab	Note									
Total solids	NREL ¹⁵										
Volatile solids	NREL										
pН	NREL										
Ammonia	Columbia Analytical Services ¹⁶	Subcontracted by NREL									
Total Organic Carbon	Columbia Analytical Services	Subcontracted by NREL									
Metals (suite of 11)	Columbia Analytical Services	Subcontracted by NREL									
Calcium carbonate	QORE Property Sciences, Birmingham, AL	Subcontracted by NREL									
Oil & Grease	Associated Laboratories, Orange, CA	Subcontracted by NREL									
TrPH	Associated Laboratories, Orange, CA	Subcontracted by NREL									
Total Sulfides	Associated Laboratories, Orange, CA	Subcontracted by NREL									
Soluble Sulfides	Associated Laboratories, Orange, CA	Subcontracted by NREL									
Pesticides	Columbia Analytical Services	Subcontracted by NREL									
PAHs	Columbia Analytical Services	Subcontracted by NREL									
PCBs	Columbia Analytical Services	Subcontracted by NREL									
Phthalates	Columbia Analytical Services	Subcontracted by NREL									
Phenols	Columbia Analytical Services	Subcontracted by NREL									
Organotins (butyltins)	Columbia Analytical Services	Subcontracted by NREL.									

- Analytical labs performing chemical tests on impounded sediment samples Attachmont ? _

 ¹⁵ Navy Regional Environmental Laboratory, Public Works Center, Code 910, Naval Air Station, North Island Bldg. M-9, San Diego, CA 92135.
¹⁶ Columbia Analytical Services, 1317 South 13th Avenue, PO Box 479, Kelso, WA 98626.

First set of five samples--holes 01-01 and 02-01:

Attachment 3.—Matilija Dam removal study--test results for potential contaminants in impounded sediments.

Α	bbreviations used for SQG's:				Sediment Quality Guidelines (SQGs)								
EF	RL = "effects range -low";		Method							Sam	nle Testing Re	esults (3)	
SI	L = "screening level"		Limit /							Juin	pre recting re		
M	L = "maximum level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
		Analytical	Detection	TT · (2)					01-01	01-01	02-01	02-01	02-01
		Method (7)	Limit ^(na)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	28.3-33.3	/3.3-/8.3	23-28	39.5-43	63-68
PHY	SICAL/CONVENTIONALS										()		
	Total Solids (wet weight)	EPA 160.3M	0.01	%					57.4	70.1	63.8	68.6	70.5
	Total Volatile Solids (wet weight)	SM 2540G	0.01	%					9.85	4.91	6.85	3.67	4.96
	рН	EPA 9045	0.1	pH units					6.9	7.2	7.1	7.2	7.2
	Ammonia	EPA 350.1M	0.5 / 0.5	mg/kg					253	85.2	128	38.5	109
	Total Organic Carbon	EPA 9060M	500/ 300	mg/kg					50900	11900	29000	22700	10500
	Soluble Sulfides	EPA/CE-81-1	0.1	mg/kg					137	73	99	124	148
	Total Sulfides	EPA 9030B	3	mg/kg					41	33	62	43	23
	Calcium carbonate	ASTM D-4373	0.1	%					0.10	0.20	0.10	0.10	0.20
	Oil and Grease	EPA 413.2	10	mg/kg					31	33	30	29	26
	Total Recoverable Petroleum Hydrocarbons	EPA 413.1	10	mg/kg					34	30	23	29	23
MET	TALS												
	Antimony (Sb)		varies						0.23 w/	0.19 w/	0.19 w/	0.15 w/	0.15 w/
			see test						MRL 0.05 /	MRL 0.06 /	MRL 0.05 /	MRL 0.05 /	MRL 0.05 /
		EPA 6020	columns	mg/kg			15	200	MDL 0.03	MDL 0.03	MDL 0.03	MDL 0.03	MDL 0.03
	Arsenic (As)		varies						6.65 w/	6.81 w/	6.69 w/	6.00 w/	5.71 w/
			see test						MRL 0.49 /	MRL 0.57 /	MRL 0.47 /	MRL 0.52 /	MRL 0.52 /
		EPA 6020	columns	mg/kg	8.2	70	57	700	MDL 0.05	MDL 0.06	MDL 0.05	MDL 0.05	MDL 0.05
	Cadmium (Cd)		varies						0.44 w/	0.31 w/	0.33 w/	0.25 w/	0.31 w/
		EDA (020	see test	л	1.0	0.6	C 1	14	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /
		EPA 6020	columns	mg/kg	1.2	9.6	5.1	14	MDL 0.01	MDL 0.01	MDL 0.01	MDL 0.01	MDL 0.01
	Chromium (Cr)		varies						25.4 W/	28.5 W/	28.5 W/	18.6 W/	25.8 W/
		EDA 6020	columns	ma/ka	81	370			MRL 0.207	MRL 0.257	MDL 0.08	MDI 0.00	MRL 0.217
	Copper (Cu)	LI A 0020	varies	mg/kg	01	570			32.4 w/	32.6 w/	30.3 w/	23.8 w/	32.1 w/
	copper (Cu)		see test						MRL 0 20 /	MRL 0 23 /	MRL 0 19 /	MRL 0 21 /	MRL 0 21 /
		EPA 6020	columns	mg/kg	34	270	390	1,300	MDL 0.09	MDL 0.10	MDL 0.08	MDL 0.09	MDL 0.09
	Lead (Pb)		varies		-			<u>,-</u> .,	33.0 w/	18.3 w/	20.3 w/	13.7 w/	18.7 w/
		EPA 6020	see test	mg/kg	46.7	218	450	1,200	MRL 0.05 /	MRL 0.06 /	MRL 0.05 /	MRL 0.05 /	MRL 0.05 /

br

Abbreviations used for SQG's:				Sediment Quality Guidelines (SQGs)								
ERL = "effects range -low";		Method Reporting							Sam	ple Testing Re	esults (3)	
SL = "screening level"		Limit /										
ML = "maximum level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
	Analytical	Detection	T T: (2)	<i>(</i> 7	1 1000	mann				02-01	02-01	02-01
	Method	Limit	Units (-)	(Long et	al., 1999)	(PSDDA	A, 2000)	28.3-33.3	/3.3-/8.3	23-28	39.5-43	03-08
		columns						MDL 0.04	MDL 0.05	MDL 0.04	MDL 0.04	MDL 0.04
Mercury (Hg)		varies						0.09 W/	0.06 W/	0.0/w/	0.11 W/	0.08 W/
	EPA 7471A	columns	mø/kø	0.15	0.71	0.41	2.3	MDL 0.01	MDL 0.027	MDL 0.01	MDL 0.027	MDL 0.01
Nickel (Ni)		varies		0.10	0.71	0.11	2.5	23.5 w/	22.4 w/	22.6 w/	17.6 w/	21.5 w/
		see test						MRL 0. 2 /	MRL 0.2 /	MRL 0.2 /	MRL 0.2 /	MRL 0.2 /
	EPA 6020	columns	mg/kg	20.9	51.6	140	370	MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.2
Selenium (Se)		varies						0.52 w/	0.71 w/	0.54 w/	0.45 w/	0.65 w/
		see test						MRL 0.10 /	MRL 0.12 /	MRL 0.09 /	MRL 0.10 /	MRL 0.11 /
	EPA 7742	columns	mg/kg					MDL 0.04	MDL 0.05	MDL 0.04	MDL 0.04	MDL 0.04
Silver (Ag)		varies						0.15 w/	0.14 w/	0.15 w/	0.08 w/	0.14 w/
	EDA 6020	see test	ma/lra	1	27	6.1	0.1	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /
$Z_{\rm inc}(7n)$	EPA 0020	columns	mg/kg	1	5.7	0.1	0.4	MDL 0.01	NDL 0.01	MDL 0.01	MDL 0.01	NDL 0.01
		varies						97.7 W/	05.0 W/ MRI 0.6 /	95.5 W/ MRI 0.5 /	04.2 W/ MRI 0.5 /	80.5 W/ MRI 0.05 /
	EPA 6020	columns	mg/kg	150	410	410	3.800	MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.02
ORGANICS											1	
PESTICIDES												
Total Chlorinated Pesticides (4)		varies										
		see test										
	EPA 8081A	columns	ug/kg	6.8	108.1	56.9	69.0	3.9	12.3	ND	ND	3.9
Aldrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EDA 0001A	see test	л			10		MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
-1-1- DUC	EPA 8081A	columns	ug/kg			10		MDL 0.42	MDL 3.3	MDL 4.0	MDL 3.4	MDL 3.5
aipna BHC		varies						MDI 18/	MPI 14 /	ND W/	ND W/ MRI 15 /	MPL 15 /
	EPA 8081A	columns	110/ko					MDL 0.18	MDL 15	MDL 4 4	MDL 15	MDL 3.9
alpha-Chlordane	Lintooonn	varies	ug/ng					ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 2.1 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg			10		MDL 2.1	MDL 1.5	MDL 1.8	MDL 2.2	MDL 1.6
beta-BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg					MDL 0.18	MDL 2.1	MDL 2.5	MDL 2.2	MDL 2.2
delta-BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EDA 00014	see test						MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
Dialdain	EPA 8081A	columns	ug/kg					MDL 0.66	MDL 5.1	MDL 6.3	MDL 3.4	MDL 5.5
Dielarin	EDA 8081A	varies	110/20	0.02	8.0	10		NDW/ MRI 19/	ND W/ MRI 14 /	ND W/ MRL 17 /	ND W/ MRI 15 /	NDW/ MRI 15/
	LIA 0001A	500 1051	ug/Kg	0.02	0.0	10	I	WINL 1.0 /	WINL 14/	WINL 1//	WINL 10/	WINL IJ/

Abbreviations used for SQG's:		26.1.1		Sediment Quality Guidelines (SQGs)								
ERL = "effects range -low"; EPM = "effects range _ medium";		Reporting							Sam	ple Testing Re	esults (3)	
SL = "screening level" ML = "maximum level"	Analytical	Limit / Method Detection	1 (2)	ERL	ERM	SL	ML	MDH- 01-01	MDH- 01-01	MDH- 02-01	MDH- 02-01	MDH- 02-01
	Method (1)		Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	28.3-33.3	/3.3-/8.3	23-28	39.5-43'	63-68 [°]
En dogulfon I		columns						MDL 0.54	MDL 4.3	MDL 5.2	MDL 4.5	MDL 4.5
		see test	_					MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg				-	MDL 0.22	MDL 1.7	MDL 2.7	MDL 1.8	MDL 1.9
Endosulfan II		varies						ND W/	ND W/	ND W/	ND w/ MDI 15 /	ND w/
	EPA 8081A	columns	ug/kg					MDL 0.39	MDL 3.0	MDL 3.7	MDL 3.2	MDL 3.3
Endosulfan Sulfate		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.9 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg					MDL 1.9	MDL 2.3	MDL 2.7	MDL 2.4	MDL 2.4
Endrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EPA 8081A	columns	110/ko					MDL 0.32	MRL 147 MDL 1.9	MDL 2 3	MDL 2.0	MDL 2.0
gamma-BHC Lindane	Liniouonii	varies	ug/Ng					ND w/	3.8 w/	ND w/	ND w/	ND w/
8		see test						MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg			10		MDL 1.9	MDL 3.4	MDL 4.1	MDL 15	MDL 15
gamma-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EDA 9091A	see test						MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
Hantaahlar	EPA 8081A	vorios	ug/kg					MDL 0.85	MDL 2.1	MDL 2.5	MDL 2.2	MDL 2.2
rieptaemoi		see test						MRL 18/	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg			10		MDL 1.8	MDL 1.9	MDL 2.3	MDL 2.0	MDL 2.0
Toxaphene		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 88 /	MRL 690 /	MRL 840 /	MRL 730 /	MRL 740 /
(5)	EPA 8081A	columns	ug/kg					MDL 9.9	MDL 78	MDL 95	MDL 82	MDL 83
Total DDT (5)		varies										
	EPA 8081A	columns	119/kg	1 58	46.1	69	69.0	39	8 5	ND	ND	39
4.4'-DDD	Lintocom	varies	ug/ng	1.50	10.1	0.9	07.0	1.8 w/	3.5 w/	ND w/	ND w/	3.9 w/
7		see test						MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns)	ug/kg	1.0	7.0			MDL 0.27	MDL 2.1	MDL 2.6	MDL 2.2	MDL 2.3
4,4'-DDE		varies						2.1 w/	5.0 w/	ND w/	ND w/	ND w/
	EDA 90914	see test	ug/kg	2.2	27			MRL 1.8 /	MRL 14 /	MRL 17/	MRL 15 /	MRL 15 /
4 4'-DDT	EFA 0001A	varies	ug/kg	2.2	21			NDL 0.44	ND w/	NDL 4.2	ND w/	ND w/
ועע- ד,		see test						MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg	2.0	20			MDL 0.92	MDL 2.4	MDL 2.9	MDL 2.5	MDL 2.5
Heptachlor Epoxide	EPA 8081A	varies	ug/kg					ND w/	ND w/	ND w/	ND w/	ND w/

Abbreviations used for SQG's:				Sediment Quality Guidelines (SQGs)								
ERL = "effects range - low"; ERM = "effects range - medium";		Reporting							Sam	ple Testing Re	esults (3)	
SL = "screening level" ML = "maximum level"	Limit / Method Analytical Method ⁽¹⁾ Limit ^(1a)		Units ⁽²⁾	ERL (Long et	ERL ERM (Long et al., 1999)		ML 4, 2000)	MDH- 01-01 28.3-33.3'	MDH- 01-01 73.3-78.3'	MDH- 02-01 23-28'	MDH- 02-01 39.5-43'	MDH- 02-01 63-68'
		see test					, ,	MRL 1.8 /	MRL 14 /	MRL 17 /	MRL 15 /	MRL 15 /
Fradrig Aldaharda		columns						MDL 0.24	MDL 1.9	MDL 2.3	MDL 2.0	MDL 2.0
	EPA 8081A	see test columns	ug/kg					MRL 1.8 / MDL 0.63	MRL 14 / MDL 4.9	MRL 17 / MDL 6.0	MRL 15 / MDL 5.2	MRL 15 / MDL 5.2
Endrin Ketone	EPA 8081A	varies see test columns	uø/kø					ND w/ MRL 1.8 / MDL 0.64	ND w/ MRL 14 / MDL 3 0	ND w/ MRL 17 / MDL 2.7	ND w/ MRL 15 / MDL 2 4	ND w/ MRL 15 / MDL 3 0
Methoxychlor	EDA 8081A	varies see test	ug/kg					ND w/ MRL 1.8 / MDL 0.29	ND w/ MRL 14 / MDL 3 7	ND w/ MRL 17 / MDL 2.8	ND w/ MRL 15 / MDL 2 4	ND w/ MRL 15 / MDL 2.4
ORGANOTINS	LINGOOM	columns	ug/Kg					MIDE 0.27	MDL 5.7	MDE 2.0	MDL 2.4	MDL 2.4
Total Organotins ⁽⁴⁾			ug/kg					ND	ND	NT	NT	NT
Monobutyltin (n-Butyltin)	Krone	varies see tests column	ug/kg					ND w/ MRL 1.8 / MDL 0.53	ND w/ MRL 1.4 / MDL 0.42	NT	NT	NT
Di-n-butyltin	Krone	varies see tests column	ug/kg					ND w/ MRL 1.8 / MDL 0.54	ND w/ MRL 1.4 / MDL 0.42	NT	NT	NT
Tri-n-butyltin	Krone	varies see tests column	ug/kg					ND w/ MRL 1.8 / MDL 0.57	ND w/ MRL 1.4 / MDL 0.44	NT	NT	NT
Tetra-n-butyltin	Krone	varies see tests column	ug/kg			0.15 ⁽⁷⁾		ND w/ MRL 1.8 / MDL 0.68	ND w/ MRL 1.4 / MDL 0.53	NT	NT	NT
PHTHALATES												
Total phthalates ⁽⁴⁾			ug/kg			23,170		852.8	688.9	NT	NT	NT
Bis (2-ethylhexyl) phthalate	EPA 8270C	varies see tests column	ug/kg			8,300		830 w/ MRL 360 / MDL 220	670 w/ MRL 280 / MDL 170	NT	NT	NT
Butyl benzyl phthalate	EPA 8270C	varies see tests column	ug/kg			970		2.5 w/ MRL 18 / MDL 2.5	1.9 w/ MRL 14 / MDL 1.9	NT	NT	NT
Diethyl phthalate	EPA 8270C	varies see tests column	ug/kg			1,200		8.2 w/ MRL 18 / MDL 2.9	4.2 w/ MRL 14 / MDL 4.2	NT	NT	NT
Dimethyl phthalate	EPA 8270C	varies see tests	ug/kg			1,400		4.6 w/ MRL 18 /	3.6 w/ MRL 14 /	NT	NT	NT

Abbreviations used for SQG's:		Sediment Quality Guidelines (SQGs)										
ERL = "effects range -low";		Method							Sam	ole Testing R	esults (3)	
SI = "screening level"		Limit /							Juin	sie resting it		
ML = "maximum level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
	Analytical	Detection		LICE	Liui	51		01-01	01-01	02-01	02-01	02-01
	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	28.3-33.3'	73.3-78.3'	23-28'	39.5-43'	63-68'
		column						MDL 5.4	MDL 3.6			
Di-n-butyl phthalate		varies						4.6 w/	6.9 w/			
		see tests						MRL 18 /	MRL 14 /			
	EPA 8270C	column	ug/kg			5,100		MDL 4.6	MDL 3.6	NT	NT	NT
Di-n-octyl phthalate		varies						2.9 w/	2.3 w/			
		see tests	a			< 2 00		MRL 18 /	MRL 14 /	ЪТТ	NIT) IT
	EPA 82/0C	column	ug/kg			6,200		MDL 2.9	MDL 2.3	NI	NI	NI
POLYCHLORINATED BIPHE	NYLS (PCB)	1		22.7	100	120	2 100		ND) IT	NIT	١T
Total PCBs (7			ug/kg	22.7	180	130	3,100	ND	ND	NT	NT	NT
Aroclor 1016		varies						ND W/	ND w/			
	EDA 9092	see tests	ug/kg					MRL 187	MRL 14 / MDL 2 2	NT	NT	NT
A region 1221	LI A 0002	varias	ug/kg					ND w/	MDL 5.5	111	111	111
AIOCIOI 1221		see tests						MRI 36/	MRI 28 /			
	EPA 8082	column	ug/kg					MDL 4.2	MDL 3.3	NT	NT	NT
Aroclor 1232		varies	**8***8					ND w/	ND w/			
		see tests						MRL 18 /	MRL 14 /			
	EPA 8082	column	ug/kg					MDL 4.2	MDL 3.3	NT	NT	NT
Aroclor 1242		varies						ND w/	ND w/			
		see tests						MRL 18 /	MRL 14 /			
	EPA 8082	column	ug/kg					MDL 4.2	MDL 3.3	NT	NT	NT
Aroclor 1248		varies						ND w/	ND w/			
		see tests						MRL 18 /	MRL 14 /			
	EPA 8082	column	ug/kg					MDL 42	MDL 3.3	NT	NT	NT
Aroclor 1254		varies						ND w/	ND w/			
	EDA 9092	see tests	ua/lea					MRL 18/	MRL 14 /	NT	NT	NТ
A == -1 == 12(0	EPA 8082	column	ug/kg					MDL 4.2	MDL 5.5	INI	INI	IN I
Afocior 1260		varies						MPI 18/	MPL 14 /			
	EPA 8082	column	110/ko					MDL 4 2	MDL 3.3	NT	NT	NT
POLYNUCLEAR AROMATIC	S HYDROCARR	ONS (PAH)	"B" "B									
Total PAHs ⁽⁴⁾			ug/kg	4 022	44 792			190.04	402.55	NT	NT	NT
2-Methylnaphthalene		varies	"B" "B	1,022	11,72			28 w/	63 w/	NT	NT	NT
2 methymaphinatene		see tests						MRL 18 /	MRL 14 /	111		111
	EPA 8270C	column	ug/kg	70	670	670	1,900	MDL 5.3	MDL 4.2			
Acenaphthene		varies						4.6 w/	3.6 w/	NT	NT	NT
	EPA 8270C	see tests	ug/kg	16	500	500	2,000	MRL 18 /	MRL 14 /			

Abbreviations used for SQG's:				Sedin	nent Quality	Guidelines	(SQGs)					
ERL = "effects range -low";		Method Reporting							Sam	ole Testing Re	esults (3)	
SL = "screening level"		Limit /										
ML = "maximum level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
	Analytical Method ⁽¹⁾	Detection	Unite (2)	(1	-1 1000)		2000)	01-01	01-01	02-01	02-01	02-01 63-68'
	Wiethou	column	Units	(Long et	al., 1999)	(PSDD/	4,2000)	20.5-55.5 MDI 4.6	MDL 3.6	25-20	37.3-43	05-08
Acenanhthylene		varies						2.9 w/	2.3 w/	NT	NT	NT
reenapititytene		see tests						MRL 18 /	MRL 14 /			111
	EPA 8270C	column	ug/kg	44	640	560	1,300	MDL 2.9	MDL 2.3			
Anthracene		varies						4.1 w/	3.2 w/	NT	NT	NT
	EDA 8270C	see tests	ug/kg	85.2	1 100	060	12 000	MRL 18 / MDL 4 1	MRL 14 /			
Benzo(a)anthracene	LIA 8270C	varies	ug/kg	85.5	1,100	900	13,000	$\frac{1}{4.1}$	9.2 w/	NT	NT	NT
Benzo(u)ununueene		see tests						MRL 18 /	MRL 14 /		111	111
	EPA 8270C	column	ug/kg	261	1,600	1,300	5,100	MDL 1.9	MDL 1.5			
Benzo(a)pyrene		varies						3.5 w/	1.4 w/	NT	NT	NT
	EDA 8270C	see tests	ug/kg	420	1 600	1.600	2 600	MRL 18 / MDL 1.7	MRL 14 / MDL 1.4			
Benzo(b)fluoranthene	EFA 8270C	varies	ug/kg	430	1,000	1,000	3,000	7.2 w/	18 w/	NT	NT	NT
Benzo(b)huorantinene		see tests						MRL 18 /	MRL 14 /		111	111
	EPA 8270C	column	ug/kg			1,600	4,950	MDL 1.7	MDL 1.3			
Benzo(k)fluoranthene		varies						2.9 w/	2.8 w/	NT	NT	NT
	EDA 9270C	see tests	na/ka			1 600	4.050	MRL 18 /	MRL 14 /			
Benzo(g h i)nervlene	EPA 82/0C	varies	ug/kg			1,000	4,930	1 9 w/	$\frac{13 \text{ w}}{13 \text{ w}}$	NT	NT	NT
Benzo(g,n,r)peryrene		see tests						MRL 18 /	MRL 14 /	111	111	141
	EPA 8270C	column	ug/kg			670	3,200	MDL 1.9	MDL 1.5			
Chrysene		varies						13 w/	55 w/	NT	NT	NT
	EDA 9270C	see tests	ua/ka	201	2 800	1 400	21.000	MRL 18 /	MRL 14 /			
Dibanzo(a b)anthracana	EPA 82/0C	varies	ug/kg	364	2,800	1,400	21,000	$\frac{17}{17} \frac{17}{1} \frac{1}{10}$	$\frac{1}{14} \frac{1}{1} 1$	NT	NT	NT
Dibenzo(a,ii)anun acene		see tests						MRL 18 /	MRL 14 /	111	IN I	111
	EPA 8270C	column	ug/kg	63.4	260	230	1,900	MDL 1.7	MDL 1.4			
Fluoranthene		varies						8.9 w/	14 w/	NT	NT	NT
	EDA 9270C	see tests		(00	5 100	1 700	20.000	MRL 18 /	MRL 14 /			
Elvarana	EPA 82/0C	column	ug/kg	600	5,100	1,700	30,000	MDL 4.5	MDL 3.4	NT	NT	NT
		see tests						MRL 18 /	20 w/ MRL 14 /	1 N 1	18.1	18.1
	EPA 8270C	column	ug/kg	19	540	540	3,600	MDL 4.2	MDL 3.3			
Indeno(1,2,3-cd)pyrene		varies						0.84 w/	0.65 w/	NT	NT	NT
	EDA 9270C	see tests				(00	4 400	MRL 18 /	MRL 14 /			
Nanhthalana	EPA 8270C	column	ug/kg	160	2 100	2 100	4,400	MDL 0.84	MDL 0.65	NT	NT	NT
Naphinaiene	EPA 82/0C	varies	ug/kg	100	2,100	2,100	2,400	30 W/	18 W/	IN I	IN I	INI

Abbreviations used for SQG's:				Sedin	nent Quality	Guidelines	(SQGs)					
ERL = "effects range - low"; ERM = "effects range - medium";		Method Reporting							Sam	ple Testing R	esults (3)	
SL = "screening level" ML = "maximum level"	Analytical Method ⁽¹⁾	Limit / Method Detection Limit ^(la)	Units ⁽²⁾	ERL (Long et	ERM	SL (PSDD/	ML	MDH- 01-01 28.3-33.3'	MDH- 01-01 73.3-78.3'	MDH- 02-01 23-28'	MDH- 02-01 39.5-43'	MDH- 02-01 63-68'
		see tests column						MRL 18 / MDL 2.6	MRL 14 / MDL 2.1			
Phenanthrene	EPA 8270C	varies see tests column	ug/kg	240	1,500	1,500	21,000	36 w/ MRL 18 / MDL 3.6	150 w/ MRL 14 / MDL 2.8	NT	NT	NT
Pyrene	EPA 8270C	varies see tests column	ug/kg	665	2,600	2,600	16,000	8.9 w/ MRL 18 / MDL 4.6	19 w/ MRL 14 / MDL 3.6	NT	NT	NT
PHENOLS												
Total Phenols ⁽⁴⁾			ug/kg			1582	5777	220.8	92	NT	NT	NT
2,4-Dimethylphenol	EPA 8270C	varies see tests column	ug/kg			29	210	27 w/ MRL 88 / MDL 27	21 w/ MRL 69 / MDL 21	NT	NT	NT
2-Methylphenol	EPA 8270C	varies see tests column	ug/kg			63	77	10 w/ MRL 18 / MDL 4.2	3.3 w/ MRL 14 / MDL 3.3	NT	NT	NT
4-Methylphenol	EPA 8270C	varies see tests column	ug/kg			670	3,600	73 w/ MRL 18 / MDL 4.2,	3.3 w/ MRL 14 / MDL 3.3	NT	NT	NT
Pentachlorophenol	EPA 8270C	varies see tests column	ug/kg			400	690	4.1 w/ MRL 88 / MDL 4.1	3.2 w/ MRL 69 / MDL 3.2	NT	NT	NT
2-Chlorophenol	EPA 8270C	varies see tests column	ug/kg					4.6 w/ MRL 18 / MDL 4.6	3.6 w/ MRL 14 / MDL 3.6	NT	NT	NT
4-Chloro-3-methylphenol	EPA 8270C	varies see tests column	ug/kg					4.9 w/ MRL 18 / MDL 4.9	3.8 w/ MRL 14 / MDL 3.8	NT	NT	NT
2,4-Dichlorophenol	EPA 8270C	varies see tests column	ug/kg					5.0 w/ MRL 18 / MDL 5.0	3.9 w/ MRL 14 / MDL 3.9	NT	NT	NT
2-Nitrophenol	EPA 8270C	varies see tests column	ug/kg					4.5 w/ MRL 18 / MDL 4.5	3.5 w/ MRL 14 / MDL 3.5	NT	NT	NT
4-Nitrophenol	EPA 8270C	varies see tests column	ug/kg					4.1 w/ MRL 180 / MDL 4.1	3.2 w/ MRL 140 / MDL 3.2	NT	NT	NT
2,4-Dinitrophenol	EPA 8270C	varies	ug/kg					24 w/	19 w/	NT	NT	NT

Abbreviations used for SQG's:				Sedim	ent Quality	Guidelines ((SQGs)]				
ERL = "effects range -low"; ERM = "effects range - medium"		Reporting							Samp	ole Testing Re	esults (3)	
SL = "screening level" ML = "maximum level"	, Analytical Method ⁽¹⁾	Limit / Method Detection Limit ^(1a)	Units ⁽²⁾	ERL (Long et	ERM al., 1999)	SL (PSDDA	ML A, 2000)	MDH- 01-01 28.3-33.3'	MDH- 01-01 73.3-78.3'	MDH- 02-01 23-28'	MDH- 02-01 39.5-43'	MDH- 02-01 63-68'
		see tests column						MRL 360 / MDL 24	MRL 280 / MDL 19			
2-Methyl-4,6-dinitrophenol	EPA 8270C	varies see tests column	ug/kg					5.5 w/ MRL 180 / MDL 5.5	4.3 w/ MRL 140 / MDL 4.3	NT	NT	NT
2,4,5-Trichlorophenol	EPA 8270C	varies see tests column	ug/kg					6.5 w/ MRL 18 / MDL 6.5	5.1 w/ MRL 14 / MDL 5.1	NT	NT	NT
2,4,6-Trichlorophenol	EPA 8270C	varies see tests column	ug/kg					6.6 w/ MRL 18 / MDL 6.6	5.2 w/ MRL 14 / MDL 5.2	NT	NT	NT
Phenol	EPA 8270C	varies see tests column	ug/kg					41 w/ MRL 53 / MDL 4.9	9.6 w/ MRL 42 / MDL 3.8	NT	NT	NT

Second set of five samples--holes 03-01, 04-01, and upper part of 05-01:

A 1	hbraviations used for SOC's		Mathad		Sedim	ent Quality	Guidelines (SQGs)					
ER	L = "effects range -low";		Reporting							Sam	ple Testing Re	esults (3)	
ER SL	.M = "effects range - medium"; = "screening level"	Analytical	Limit / Method		ERL	ERM	SL	ML	MDH- 03.01	MDH- 03-01	MDH- 03.01	MDH-	MDH-
IVI		Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	23.3-28.3'	38.3-43.3'	53.3-58.3'	13-18'	18-23'
РНУ	SICAL/CONVENTIONALS												
	Total Solids (wet weight)	EPA 160.3M		%					63.1	69.5	71.4	67.0	60.7
	Total Volatile Solids (wet weight)	SM 2540G	0.01	%					7.91	4.88	3.81	4.53	4.86
	pH	EPA 9045	0.1	pH units					6.9	7.1	7.0	6.7	7.2
	Ammonia		varies						126 w/	82.7 w/	68.4 w/	62.2 w/	102 w/
			see tests						MRL 0.05 /	MRL 0.05 /	MRL 0.05 /	MRL 0.05 /	MRL 0.02 /
		EPA 350.1M	column	mg/kg					MDL 0.05	MDL 0.05	MDL 0.05	MDL 0.05	MDL 0.02
	Total Organic Carbon	EPA 9060M	500/ 300	mg/kg					27400	15100	10400	14800	13900
	Soluble Sulfides	EPA/CE-81-1	0.1	mg/kg					65	302	102	80	116

		N 4 1		Sedin	nent Quality	Guidelines	(SQGs)					
Abbreviations used for S ERL = "effects range -low	QG's: _v ".	Reporting							Sam	ple Testing Re	esults (3)	
ERM = "effects range - n SL = "screening level" ML = "maximum level"	edium"; Analytica Method ⁽¹⁾	Limit / Method Limit ^(1a)	Units ⁽²⁾	ERL (Long et	ERM	SL (PSDD/	ML	MDH- 03-01 23.3-28.3'	MDH- 03-01 38.3-43.3'	MDH- 03-01 53.3-58.3'	MDH- 04-01 13-18'	MDH- 05-01 18-23'
Total Sulfides	EPA 90301	3 3	mg/kg	(8 t		(- ~		45	161	50	44	3
Calcium carbonate	ASTM D-43	73 0.1	%						0.36	0.36	0.20	0.52
Oil and Grease	EPA 413.2	10	mg/kg					27	25	23	21	18
Total Recoverable Pet Hydrocarbons	EPA 413.1	10	mg/kg					15	11	11	12	18
METALS												
Antimony (Sb)	EPA 6020	varies see test columns	mg/kg			15	200	0.17 w/ MRL 0.05 / MDL 0.03	0.15 w/ MRL 0.06 / MDL 0.04	0.16 w/ MRL 0.06 / MDL 0.04	0.13 w/ MRL 0.05 / MDL 0.03	0.13 w/ MRL 0.05 / MDL 0.03
Arsenic (As)	EPA 6020	varies see test columns	mg/kg	8.2	70	57	700	5.36 w/ MRL 0.52 / MDL 0.05	5.97 w/ MRL 0.58 / MDL 0.06	5.95 w/ MRL 0.59 / MDL 0.06	5.89 w/ MRL 0.53 / MDL 0.05	7.5 w/ MRL 0.5 / MDL 0.2
Cadmium (Cd)	EPA 6020	varies see test columns	mg/kg	1.2	9.6	5.1	14	0.29 w/ MRL 0.02 / MDL 0.01	0.28 w/ MRL 0.02 / MDL 0.01	0.29 w/ MRL 0.02 / MDL 0.01	0.26 w/ MRL 0.02 / MDL 0.01	0.33 w/ MRL 0.05 / MDL 0.03
Chromium (Cr)	EPA 6020	varies see test columns	mg/kg	81	370			19.9 w/ MRL 0.21 / MDL 0.09	18.5 w/ MRL 0.23 / MDL 0.11	23.4 w/ MRL 0.24 / MDL 0.11	21.9 w/ MRL 0.21 / MDL 0.10	28.5 w/ MRL 0.21 / MDL 0.04
Copper (Cu)	EPA 6020	varies see test columns	mg/kg	34	270	390	1,300	24.8 w/ MRL 0.21 / MDL 0.09	25.2 w/ MRL 0.23 / MDL 0.11	26.3 w/ MRL 0.24 / MDL 0.11	25.4 w/ MRL 0.21 / MDL 0.10	34.2 w/ MRL 0.10 / MDL 0.05
Lead (Pb)	EPA 6020	varies see test columns	mg/kg	46.7	218	450	1,200	17.3 w/ MRL 0.05 / MDL 0.04	14.6 w/ MRL 0.06 / MDL 0.05	15.9 w/ MRL 0.06 / MDL 0.05	16.6 w/ MRL 0.05 / MDL 0.04	18.3 w/ MRL 0.05 / MDL 0.04
Mercury (Hg)	EPA 7471/	varies see test columns	mg/kg	0.15	0.71	0.41	2.3	0.11 w/ MRL 0.02 / MDL 0.01	0.06 w/ MRL 0.02 / MDL 0.01	0.07 w/ MRL 0.02 / MDL 0.01	0.19 w/ MRL 0.01 / MDL 0.01	0.058 w/ MRL 0.015 / MDL 0.007
Nickel (Ni)	EPA 6020	varies see test columns	mg/kg	20.9	51.6	140	370	18.7 w/ MRL 0.2 / MDL 0.2	18.5 w/ MRL 0.2 / MDL 0.2	20.6 w/ MRL 0.2 / MDL 0.2	19.2 w/ MRL 0.2 / MDL 0.2	26.9 w/ MRL 0.5 / MDL 0.3
Selenium (Se)	EPA 7742	varies see test columns	mg/kg					0.43 w/ MRL 0. 10 / MDL 0.04	0.65 w/ MRL 0.12 / MDL 0.05	0.70 w/ MRL 0.12 / MDL 0.05	0.66 w/ MRL 0.11 / MDL 0.04	0.70 w/ MRL 0.21 / MDL 0.03
Silver (Ag)	EPA 6020	varies see test columns	mg/kg	1	3.7	6.1	8.4	0.10 w/ MRL 0.02 / MDL 0.01	0.11 w/ MRL 0.02 / MDL 0.01	0.11 w/ MRL 0.02 / MDL 0.01	0.11 w/ MRL 0.02 / MDL 0.01	0.13 w/ MRL 0.02 / MDL 0.01
Zinc (Zn)	EPA 6020	varies	mg/kg	150	410	410	3,800	70.1 w/	67.4 w/	76.1 w/	69.1 w/	91.9 w/

			1	1	Sadim	ant Quality	Cuidalinas ((SOCa)	Г				
A	bbreviations used for SQG's:		Method		Seam	lent Quanty	Guidelines (SQGS)	-				
EF	RL = "effects range -low";		Reporting							Sam	ple Testing Re	esults (3)	1
EF	RM = "effects range - medium";		Limit /										
SL	= "screening level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
M	L = "maximum level"	Analytical	Detection	II · (2)					03-01	03-01	03-01	04-01	05-01
		Method (1)	Limit ⁽¹¹⁾	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	23.3-28.3	38.3-43.3	53.3-58.3	13-18	18-23
			see test						MRL 0.5 /	MRL 0.6 /	MRL 0.6 /	MRL 0.5 /	MRL 0.5 /
			columns						MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.3
OR	GANICS												
	PESTICIDES												
	Total Chlorinated Pesticides ⁽⁴⁾			ug/kg	6.8	108.1	56.9	69.0	ND	ND	ND	ND	ND
	Aldrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg			10		MDL 3.5	MDL 3.3	MDL 3.4	MDL 3.5	MDL 3.4
	alpha BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg					MDL 4.1	MDL 3.5	MDL 3.5	MDL 1.6	MDL 3.4
	alpha-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg			10		MDL 1.6	MDL 1.6	MDL 1.6	MDL 1.6	MDL 2.2
	beta-BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg					MDL 2.2	MDL 2.1	MDL 2.1	MDL 2.2	MDL 2.2
	delta-BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg					MDL 5.4	MDL 5.2	MDL 5.3	MDL 5.5	MDL 5.4
	Dieldrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg	0.02	8.0	10		MDL 4.5	MDL 4.3	MDL 4.4	MDL 4.6	MDL 4.5
	Endosulfan I		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg					MDL 1.8	MDL 1.8	MDL 1.8	MDL 1.9	MDL 1.8
	Endosulfan II		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg					MDL 3.2	MDL 3.1	MDL 3.1	MDL 3.3	MDL 3.2
	Endosulfan Sulfate		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg					MDL 2.4	MDL 2.3	MDL 2.3	MDL 2.4	MDL 2.4
1	Endrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg					MDL 2.0	MDL 1.9	MDL 1.9	MDL 2.0	MDL 19
	gamma-BHC Lindane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
			see test				1.0		MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
		EPA 8081A	columns	ug/kg			10		MDL 15	MDL 14	MDL 3.6	MDL 15	MDL 15

		N 4 1		Sedin	nent Quality	Guidelines	(SQGs)					
Abbreviations used for SQG's: FRL = "effects range -low":		Reporting							Sam	ple Testing Re	esults (3)	
ERM = "effects range - medium";		Limit /										
SL = "screening level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Analytical	Detection				~		03-01	03-01	03-01	04-01	05-01
	Method ⁽¹⁾	Limit ^(1a)	Units ⁽²⁾	(Long et	al., 1999)	(PSDDA	A, 2000)	23.3-28.3'	38.3-43.3'	53.3-58.3'	13-18'	18-23'
gamma-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg					MDL 2.2	MDL 2.1	MDL 2.1	MDL 2.2	MDL 2.2
Heptachlor		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	FR 4 0001 4	see test	a					MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg			10		MDL 2.0	MDL 1.9	MDL 2.0	MDL 2.1	MDL 2.0
Toxaphene		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EDA 0001A	see test	л					MRL 740 /	MRL 700 /	MRL /10 /	MRL 7507	MRL 7207
T . 1 P P T (5)	EPA 8081A	columns	ug/kg					MDL 83	MDL /9	MDL 80	MDL 84	MDL 81
Total DDT ⁽⁰⁾		varies										
	EDA 8081A	columns	ug/kg	1.58	46.1	6.0	60.0	ND	ND	ND	ND	ND
4 4' DDD	LIA 0001A	varias	ug/kg	1.56	40.1	0.9	09.0		ND w/	ND w/	ND w/	ND w/
4,4-000		see test						MRI 15 /	MRI 14 /	MRI 15 /	MRI 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg	1.0	7.0			MDL 2.3	MDL 2.2	MDL 2.2	MDL 2.3	MDL 2.2
4 4'-DDF	2111 000111	varies	ug/11g	1.0	,			ND w/	ND w/	ND w/	ND w/	ND w/
1,1 000		see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg	2.2	27			MDL 3.6	MDL 3.5	MDL 3.5	MDL 3.7	MDL 3.6
4,4'-DDT		varies	00					ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg	2.0	20			MDL 2.5	MDL 2.4	MDL 2.5	MDL 2.6	MDL 2.5
Heptachlor Epoxide		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg					MDL 2.0	MDL 2.1	MDL 2.0	MDL 2.1	MDL 2.0
Endrin Aldehyde		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg					MDL 5.2	MDL 5.0	MDL 5.1	MDL 5.3	MDL 5.1
Endrin Ketone		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test	_					MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg					MDL 2.4	MDL 2.4	MDL 2.3	MDL 2.4	MDL 2.3
Methoxychlor		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	ED 4 0001 4	see test	а					MRL 15 /	MRL 14 /	MRL 15 /	MRL 15 /	MRL 15 /
	EPA 8081A	columns	ug/kg					MDL 2.4	MDL 2.3	MDL 2.3	MDL 2.4	MDL 2.4
ORGANOTINS												
Total Organotins ⁽⁴⁾			ug/kg					NT	NT	NT	NT	ND
Monobutyltin (n-Butyltin)		1.5 / 0.44 for										
	Krone	05-01	ug/kg					NT	NT	NT	NT	ND
Di-n-butyltin	Krone	1.5 / 0.44 for	ug/kg					NT	NT	NT	NT	ND

				Sedin	ent Quality	Guidelines	(SQGs)					
Abbreviations used for SQG's: ERL = "effects range -low":		Reporting							Sam	ole Testing Re	esults (3)	
ERM = "effects range - medium";		Limit /								Ū		
SL = "screening level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Analytical Mathed ⁽¹⁾	Detection	Unita (2)	a .	1 1000	(DCDD)	2000)	03-01	03-01	03-01 52 2 58 21	04-01	05-01
	wiethod		Units	(Long et	al., 1999)	(PSDD/	4, 2000)	23.3-28.3	36.3-43.3	33.3-38.3	13-10	18-23
Tri n hutultin		05-01										
111-n-outynin	Krone	05-01	ug/kg					NT	NT	NT	NT	ND
Tetra-n-butyltin	Krone	1.5 / 0.56 for 05-01	ug/kg			0.15 (7)		NT	NT	NT	NT	ND
PHTHALATES												
Total phthalates (4)			ug/kg			23,170		NT	NT	NT	NT	426.8
Bis (2-ethylhexyl) phthalate	EPA 8270C	290 / 180 for 05-01	ug/kg			8,300		NT	NT	NT	NT	410
Butyl benzyl phthalate	ED4 0270C	15 / 2.0 for				070) IT	NТ	NT	NE	2.0
D' 4 1 14 14	EPA 82/0C	05-01	ug/kg			970		NI	NI	NI	NI	2.0
Diethyl phthalate	EPA 8270C	15 / 4.4 for 05-01	ug/kg			1,200		NT	NT	NT	NT	4.9
Dimethyl phthalate		15 / 3.7 for										
	EPA 8270C	05-01	ug/kg			1,400		NT	NT	NT	NT	3.7
Di-n-butyl phthalate		15 / 3.8 for	a			- 100						2.0
	EPA 8270C	05-01	ug/kg			5,100		NT	NT	NT	NT	3.8
Di-n-octyl phthalate	EPA 8270C	15 / 2.4 for 05-01	119/kg			6 200		NT	NT	NT	NT	2.4
POLYCHLORINATED BIPHE	NYLS (PCB)	00 01	«B/ 11B			0,200						2
Total PCBs ⁽⁴⁾			ug/kg	22.7	180	130	3,100	NT	NT	NT	NT	ND
Aroclor 1016		15 / 3.5 for	00				,					
	EPA 8082	05-01	ug/kg					NT	NT	NT	NT	ND
Aroclor 1221		29 / 3.5 for										
	EPA 8082	05-01	ug/kg					NT	NT	NT	NT	ND
Aroclor 1232	EPA 8082	15 / 3.5 for 05-01	ug/kg					NT	NT	NT	NT	ND
Aroclor 1242		15 / 3.5 for										
	EPA 8082	05-01	ug/kg					NT	NT	NT	NT	ND
Aroclor 1248	EPA 8082	15 / 3.5 for 05-01	ug/kg					NT	NT	NT	NT	ND
Aroclor 1254		15 / 3.5 for										
	EPA 8082	05-01	ug/kg					NT	NT	NT	NT	ND
Aroclor 1260	EPA 8082	15 / 3.5 for 05-01	ug/kg					NT	NT	NT	NT	ND
POLYNUCLEAR AROMATICS	S HYDROCARB	ONS (PAH)	"B" "B									1.2
Total PAHs ⁽⁴⁾			ug/kg	4,022	44,792			NT	NT	NT	NT	355.98

			<u> </u>	Sedim	ent Quality	Guidelines	(SQGs)]				
Abbreviations used for SQG's: ERL = "effects range -low"		Method Reporting							Sam	ple Testing Re	sults (3)	
ERM = "effects range - medium";		Limit /										
SL = "screening level"	Analytical	Method		ERL	ERM	SL	ML	MDH- 03.01	MDH- 03_01	MDH- 03.01	MDH- 04.01	MDH- 05.01
	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDD	4, 2000)	23.3-28.3'	38.3-43.3'	53.3-58.3'	13-18'	18-23'
2-Methylnaphthalene	EDA 9270C	15 / 4.4 for	wa/ka	70	670	670	1.000	NT	NT	NT	NT	88
Acenanhthene	EFA 82/0C	15/38 for	ug/kg	70	070	070	1,900	NT	NT	NT	NT	3.8
reenaphinene	EPA 8270C	05-01	ug/kg	16	500	500	2,000	111			141	5.0
Acenaphthylene	EPA 8270C	15 / 2.4 for 05-01	ug/kg	44	640	560	1.300	NT	NT	NT	NT	2.4
Anthracene		15 / 3.4 for	*8**8				-,	NT	NT	NT	NT	3.8
	EPA 8270C	05-01	ug/kg	85.3	1,100	960	13,000					
Benzo(a)anthracene	EPA 8270C	15 / 1.6 for 05-01	ug/kg	261	1,600	1,300	5,100	NT	NT	NT	NT	6.7
Benzo(a,e)pyrene	EPA 8270C	15 / 1.4 for 05-01	119/kg	430	1 600	1 600	3 600	NT	NT	NT	NT	1.4
Benzo(b)fluoranthene	EDA 9270C	15 / 1.4 for		120	1,000	1,000	4.050	NT	NT	NT	NT	16
Benzo(k)fluoranthene	EPA 82/0C	15/2.3 for	ug/kg			1,000	4,930	NT	NT	NT	NT	2.3
	EPA 8270C	05-01	ug/kg			1,600	4,950					
Benzo(g,h,i)perylene	EPA 8270C	15 / 1.5 for 05-01	ug/kg			670	3,200	NT	NT	NT	NT	1.5
Chrysene	EDA 9270C	15 / 1.6 for		284	2 800	1 400	21.000	NT	NT	NT	NT	42
Dibenzo(a h)anthracene	EPA 82/0C	$\frac{05-01}{15/14}$ for	ug/kg	384	2,800	1,400	21,000	NT	NT	NT	NT	1.4
Dibenzo(a,ii)antinacene	EPA 8270C	05-01	ug/kg	63.4	260	230	1,900	111	111	111	141	1.7
Fluoranthene	FPA 8270C	15 / 3.5 for 05-01	110/kg	600	5 100	1 700	30,000	NT	NT	NT	NT	12
Fluorene	Enrozioe	15 / 3.4 for	ug/Ng	000	5,100	1,700	50,000	NT	NT	NT	NT	14
	EPA 8270C	05-01	ug/kg	19	540	540	3,600					
Indeno(1,2,3-cd)pyrene	EPA 8270C	15 / 0.68 for 05-01	ug/kg			600	4,400	NT	NT	NT	NT	0.68
Naphthalene	EPA 8270C	15 / 2.2 for 05-01	119/kg	160	2 100	2,100	2,400	NT	NT	NT	NT	24
Phenanthrene		15 / 3.0 for	"	210	1,500	1,000	2,100	NT	NT	NT	NT	120
	EPA 8270C	05-01	ug/kg	240	1,500	1,500	21,000	ЪIТ	NТ	NТ	N	16
Pyrene	EPA 8270C	15/3./ for 05-01	ug/kg	665	2,600	2,600	16,000	NT	NT	NT	NT	16
PHENOLS												
Total Phenols ⁽⁴⁾			ug/kg			1582	5777	NT	NT	NT	NT	93.9
2,4-Dimethylphenol	EPA 8270C	72 / 22 for	ug/kg			29	210	NT	NT	NT	NT	22

				Sedim	ent Quality	Guidelines	(SQGs)	Ĵs)				
Abbreviations used for SQG's: EPL = "effects range_low":		Method							Sam	nle Testing Re	esults ⁽³⁾	
ERM = "effects range - medium":		Limit /							Juin		Julio	
SL = "screening level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Analytical	Detection		Litt	Bruit	52		03-01	03-01	03-01	04-01	05-01
	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDD/	A, 2000)	23.3-28.3'	38.3-43.3'	53.3-58.3'	13-18'	18-23'
		05-01										
2-Methylphenol		15 / 3.5 for										
	EPA 8270C	05-01	ug/kg			63	77	NT	NT	NT	NT	3.5
4-Methylphenol		15 / 3.4 for										
	EPA 8270C	05-01	ug/kg			670	3,600	NT	NT	NT	NT	3.4
Pentachlorophenol		140 / 3.3 for				100	600					
	EPA 8270C	05-01	ug/kg			400	690	NT	NT	NT	NT	3.3
2-Chlorophenol	EDA 0270C	15/3.8 for	л					NT	NT	NT	NIT	2.0
	EPA 82/0C	05-01	ug/kg					IN I	IN I	IN I	IN I	3.8
4-Chloro-3-methylphenol	EPA 8270C	/2/4.0 for 05-01	ug/kg					NT	NT	NT	NT	4.0
2.4 Dichlorophenol	EI A 8270C	15/41 for	ug/kg					111	111	111	191	4.0
2,4-Diemorophenor	EPA 8270C	05-01	ug/kg					NT	NT	NT	NT	4 1
2-Nitrophenol	EIII 02700	15/36 for	"B" "B									
	EPA 8270C	05-01	ug/kg					NT	NT	NT	NT	3.6
4-Nitrophenol		150 / 3.3 for										
1	EPA 8270C	05-01	ug/kg					NT	NT	NT	NT	3.3
2,4-Dinitrophenol		290 / 19 for										
	EPA 8270C	05-01	ug/kg					NT	NT	NT	NT	19
2-Methyl-4,6-dinitrophenol		150 / 4.5 for										
	EPA 8270C	05-01	ug/kg					NT	NT	NT	NT	4.5
2,4,5-Trichlorophenol		15 / 5.3 for										
	EPA 8270C	05-01	ug/kg					NT	NT	NT	NT	5.3
2,4,6-Trichlorophenol		15 / 5.4 for	a								N 177	
	EPA 8270C	05-01	ug/kg					NT	NT	NT	NT	5.4
Phenol	EDA 02700	44 / 4.0 for	а					NT	ЪТ	NT	NT	0.7
	EPA 8270C	05-01	ug/kg					NT	NT	NI	NT	8.7

Third set of five samples--lower part of hole 05-01, holes 06-01, 07-01, and upper part of hole 08-01:

Abbreviations used for SQG's:	Analytical	Method	Units (2)	Sedim	ent Quality	Guidelines (SQGs)	
ERL = "effects range -low";	Method ⁽¹⁾	Reporting		FRI	FRM	SI	MI	Sample Testing Desults ⁽³⁾
FDM - "affacts range madium".		I imit /		LICE	LIXIVI	5L	WIL	Sample Testing Results

								MDH- 05-01	MDH- 06-01	MDH- 07-01	MDH- 08-01	MDH- 08-01
				(Long et	al., 1999)	(PSDDA	A, 2000)	48-53	18-23	21-23	8.8-10.8	27.5-32.5
PHYSICAL/CONVENTIONALS			.									
Total Solids (wet weight)	EPA 160.3M	0.01	%					71.7	63.4	63.3	72.2	/0.8
Total Volatile Solids (wet weight)	SM 2540G	0.01	%		1			3.68	5.45	8.07	2.31	4.02
pH	EPA 9045	0.1	pH units		1			7.2	7.1	6.8	0.5	7.0
Ammonia		varies						48.1 w/	94 w/	155 w/	0.5 w/	45.1 w/
	EDA 250 1M	see tests	ma/ka					MRL 0.02 /	MRL 0.02 /	MRL 0.05 /	MRL 0.05 /	MRL 0.05 /
Total Organia Carbon	EPA 550.1M	500/200	mg/kg					MDL 0.02	MDL 0.02	MDL 0.02	MDL 0.03	14200
Calable Calfidar	EPA 9000M	500/ 300	mg/kg					10300	16200	5/500	5500	14300
	EPA/CE-81-1	0.1	mg/kg					248	318	51	9	10
Total Sulfides	EPA 9030B	3	mg/kg	1				28	26	11	/	18
Calcium carbonate	ASTM D-4373	0.1	%					0.20	0.20	0.36	0.20	0.20
Oil and Grease	EPA 413.2	10	mg/kg					25	34	48	27	84
Total Recoverable Petroleum Hydrocarbons	EPA 413.1	10	mg/kg					22	34	45	25	78
METALS												
Antimony (Sb)		varies						0.06 w/	0.14 w/	0.13 w/	0.19 w/	0.17 w/
		see test						MRL 0.03 /	MRL 0.05 /	MRL 0.05 /	MRL 0.05 /	MRL 0.06 /
	EPA 6020	columns	mg/kg			15	200	MDL 0.02	MDL 0.03	MDL 0.03	MDL 0.03	MDL 0.03
Arsenic (As)		varies						5.0 w/	7.2 w/	5.7 w/	5.38 w/	5.05 w/
	ED 4 (020	see test	a	0.0	70		700	MRL 0.5 /	MRL 0.5 /	MRL 0.5 /	MRL 0.54 /	MRL 0.58 /
	EPA 6020	columns	mg/kg	8.2	/0	5/	/00	MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.05	MDL 0.06
Cadmium (Cd)		varies						0.25 W/	0.37 W/	0.25 W/	0.21 W/	0.25 W/
	EDA 6020	see test	ma/ka	1.2	0.6	5 1	14	MRL 0.05 /	MRL 0.05 /	MRL 0.05 /	MRL 0.02 /	MRL 0.027
Chromium (Cr)	LI A 0020	varias	iiig/kg	1.2	9.0	J.1	14	16.4 w/	20.0 w/	21.6 w/	19.7 w/	17.2 w/
Chromium (Cr)		valles						MRI 0 22 /	29.9 W/ MRI 0 22 /	MRL 0.21 /	MRI 0 22 /	MRL 0.23 /
	EPA 6020	columns	mg/kg	81	370			MDL 0.04	MDL 0.04	MDL 0.04	MDL 0.10	MDL 0.10
Copper (Cii)		varies						18.9 w/	33.8 w/	28.6 w/	19.5 w/	21.6 w/
copper (cu)		see test						MRL 0.11 /	MRL 0.11 /	MRL 0.11 /	MRL 0.22 /	MRL 0.23 /
	EPA 6020	columns	mg/kg	34	270	390	1,300	MDL 0.05	MDL 0.05	MDL 0.05	MDL 0.10	MDL 0.10
Lead (Pb)		varies						10.3 w/	18.6 w/	18.1 w/	10.8 w/	12.4 w/
		see test						MRL 0.05 /	MRL 0.05 /	MRL 0.05 /	MRL 0.05 /	MRL 0.06 /
	EPA 6020	columns	mg/kg	46.7	218	450	1,200	MDL 0.04	MDL 0.04	MDL 0.04	MDL 0.04	MDL 0.05
Mercury (Hg)		varies						0.053 w/	0.069 w/	0.04 w/	0.04 w/	0.06 w/
		see test						MRL 0.015 /	MRL 0.14 /	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /
	EPA 7471A	columns	mg/kg	0.15	0.71	0.41	2.3	MDL 0.007	MDL 0.07	MDL 0.01	MDL 0.01	MDL 0.01
Nickel (Ni)		varies						16.2 w/	27.1 w/	22.5 w/	16.1 w/	16.4 w/
	EDA (020	see test	m = /l- =	20.0	51 (140	270	MRL 0.5 /	MRL 0.5 /	MRL 0.32 /	MRL 0.2 /	MRL 0.2 /
S-1-minum (S-1)	EPA 0020	columns	mg/kg	20.9	31.0	140	370	MDL 0.3	0.72 m/	NIDL 0.32	MDL 0.2	MDL 0.2
Selenium (Se)		varies						0.55 W/	0./3 W/	0.2 W/ MRI 0.2 /	0.55 W/	0.48 W/ MRI 0.12 /
	EPA 7742	columns	mø/kø					MDL 0.03	MDL 0.03	MDL 0.27	MDL 0.04	MDL 0.05
Silver (Ag)	EPA 6020	varies	mg/kg	1	37	61	84	0.04 w/	0.13 w/	0.06 w/	0.07 w/	0.08 w/
511,01 (115)	LI II 0020	vui ies	mg/ng		5.1	0.1	0.7	0.04 W/	0.15 W/	0.00 ₩/	0.07 ₩7	0.00 ₩/

				Sedim	nent Quality	Guidelines ((SQGs)					
Abbreviations used for SQG's: EPL = "effects range low":		Reporting							Sam	nle Testing Re	esults (3)	
ERM = "effects range - medium".		Limit /							Juin		Suits	
SL = "screening level"		Method		FRI	FRM	SI	MI	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Analytical	Detection		LICE	LIGM	5L	ML	05-01	06-01	07-01	08-01	08-01
	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	48-53'	18-23'	21-23'	8.8-10.8'	27.5-32.5'
	İ	see test						MRL 0.01 /	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /	MRL 0.02 /
		columns						MDL 0.00	MDL 0.01	MDL 0.01	MDL 0.01	MDL 0.01
Zinc (Zn)		varies						53.8 w/	90.9 w/	79.7 w/	55.4 w/	59.4 w/
		see test						MRL 0.5 /	MRL 0.5 /	MRL 0.5 /	MRL 0.5 /	MRL 0.6 /
	EPA 6020	columns	mg/kg	150	410	410	3,800	MDL 0.3	MDL 0.3	MDL 0.3	MDL 0.2	MDL 0.2
ORGANICS											ļ	
PESTICIDES												
Total Chlorinated Pesticides (4)			ug/kg	6.8	108.1	56.9	69.0	ND	ND	9.0	ND	ND
Aldrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg			10		MDL 3.1	MDL 3.6	MDL 0.35	MDL 0.31	MDL 3.3
alpha BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.3 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 1.4	MDL 3.8	MDL 0.31	MDL 0.39	MDL 1.5
alpha-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test	a			10		MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg			10		MDL 1.4	MDL 1.7	MDL 1.5	MDL 0.14	MDL 1.5
beta-BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13/	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 2.0	MDL 2.3	MDL 0.22	MDL 1.3	MDL 2.1
delta-BHC		varies						ND W/	ND W/ MDL 16 /	ND W/	NDW/ MDL12/	ND W/
	EDA 8081A	columns	ua/ka					MDL 4.8	MDL 5.6	MRL 1.57 MDL 0.55	MDL 0.48	MRL 147 MDL 5.2
Dialdrin	LIA 0001A	varias	ug/kg					ND w/	NDL 5.0	NDL 0.55	ND w/	ND w/
Dielarin		varies						MPI 13 /	MPL 16 /	MPI 15/	MPL 13/	MPL 14 /
	FPA 8081A	columns	110/kg	0.02	8.0	10		MDI 4.0	MDI 47	MDL 0.46	MDL 0.40	MDI 43
Endosulfan I	Lintooonn	varies	ug/ng	0.02	0.0	10		ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 2.2 /	MRL13/	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 1.6	MDL 1.9	MDL 2.2	MDL 0.16	MDL 1.8
Endosulfan II		varies	-00					ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 2.9	MDL 3.3	MDL 1.2	MDL 0.29	MDL 3.1
Endosulfan Sulfate	T	varies	ŬŬ					ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 2.1	MDL 2.5	MDL 1.3	MDL 0.34	MDL 2.3
Endrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 1.8	MDL 2.0	MDL 1.5	MDL 0.18	MDL 1.9

				Sedin	nent Quality	Guidelines	(SQGs)					
Abbreviations used for SQG's: ERL = "effects range -low":		Reporting							Sam	ple Testing Re	esults (3)	
ERM = "effects range - medium";		Limit /										
SL = "screening level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Analytical	Detection	(2)					05-01	06-01	07-01	08-01	08-01
	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDD/	4, 2000)	48-53'	18-23'	21-23'	8.8-10.8'	27.5-32.5'
gamma-BHC Lindane		varies						ND w/	ND w/	2.3 w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 2.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg			10		MDL 13	MDL 16	MDL 0.36	MDL 2.3	MDL 3.4
gamma-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test	/1					MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 2.0	MDL 2.3	MDL 1.5	MDL 0.20	MDL 2.1
Heptachlor		varies						ND W/	ND W/	ND W/	ND W/	ND W/
	EPA 8081A	columns	ug/kg			10		MDL 18	MDI 21	MDL 0.21	MDI 0.18	MDL 19
Toyanhene	LIA 000IA	varies	ug/Kg			10		ND w/	NDL 2.1	ND w/	ND w/	ND w/
Toxaphene		see test						MRL 650 /	MRL 760 /	MRL 74 /	MRL 65 /	MRL 700 /
	EPA 8081A	columns	ug/kg					MDL 73	MDL 85	MDL 8.3	MDL 7.3	MDL 79
Total DDT ⁽⁵⁾		varies	00									
		see test										
	EPA 8081A	columns	ug/kg	1.58	46.1	6.9	69.0	ND	ND	5.9	ND	ND
4,4'-DDD		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.6 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg	1.0	7.0			MDL 2.0	MDL 2.3	MDL 1.6	MDL 1.3	MDL 2.2
4,4'-DDE		varies						ND w/	ND w/	2.5 w/	ND w/	ND w/
	EDA 0001A	see test	7	2.2	27			MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg	2.2	27			MDL 3.2	MDL 3.8	MDL 0.37	MDL 0.33	MDL 3.5
4,4'-DDT		varies						ND w/	ND W/	3.4 W/	ND W/	ND w/
	EDA 8081A	see test	ug/kg	2.0	20			MDL 2.2	MDL 2.6	MRL 1.37 MDL 0.25	MDL 1.37	MRL 147
Hentachlor Enovide	LIA 000IA	varias	ug/kg	2.0	20			ND w/	NDL 2.0	NDL 0.25	ND w/	NDL 2.4
		see test						MRL 13 /	MRL 16 /	MRL 1.5 /	MRL13/	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 1.8	MDL 2.1	MDL 0.21	MDL 0.18	MDL 1.9
Endrin Aldehyde		varies	00					ND w/	ND w/	0.80 w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 4.6	MDL 5.4	MDL 0.53	MDL 0.46	MDL 5.0
Endrin Ketone		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 13 /	MRL 16 /	MRL 1.5 /	MRL 1.6 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 3.1	MDL 4.9	MDL 1.5	MDL 1.6	MDL 4.8
Methoxychlor		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	ED 4 0001 1	see test	4					MRL 13 /	MRL 16 /	MRL 1.9 /	MRL 1.3 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 2.1	MDL 2.5	MDL 1.9	MDL 0.21	MDL 3.9
ORGANOTINS												
Total Organotins (4)			ug/kg					0.55	ND	NT	NT	NT

		N 4 1		Sedin	ent Quality	Guidelines	(SQGs)					
Abbreviations used for SQG's: ERL = "effects range -low":		Reporting							Sam	ple Testing Ro	esults (3)	
ERM = "effects range - medium"; SL = "screening level" ML = "maximum level"	Analytical Method ⁽¹⁾	Limit / Method Detection Limit ^(1a)	Units ⁽²⁾	ERL (Long et	ERM	SL (PSDD)	ML	MDH- 05-01 48-53'	MDH- 06-01 18-23'	MDH- 07-01 21-23'	MDH- 08-01 8.8-10.8'	MDH- 08-01 27.5-32.5'
Monobutyltin (n-Butyltin)	Krone	varies see test columns	ug/kg	(Long et	u., 1999)		1,2000)	0.55 w/ MRL 1.3 / MDL 0.39	ND w/ MRL 1.6 / MDL 0.46	NT	NT	NT
Di-n-butyltin	Krone	varies see test columns	ug/kg					ND w/ MRL 1.3 / MDL 0.40	ND w/ MRL 1.6 / MDL 0.47	NT	NT	NT
Tri-n-butyltin	Krone	varies see test columns	ug/kg					ND w/ MRL 1.3 / MDL 0.42	ND w/ MRL 1.6 / MDL 0.49	NT	NT	NT
Tetra-n-butyltin	Krone	varies see test columns	ug/kg			0.15 ⁽⁷⁾		ND w/ MRL 1.3 / MDL 0.5	ND w/ MRL 1.6 / MDL 0.59	NT	NT	NT
PHTHALATES												
Total phthalates ⁽⁴⁾			ug/kg			23,170		178.2	207.1	NT	NT	NT
Bis (2-ethylhexyl) phthalate	EPA 8270C	varies see test columns	ug/kg			8,300		160 w/ MRL 260 / MDL 160	190 w/ MRL 310 / MDL 190	NT	NT	NT
Butyl benzyl phthalate	EPA 8270C	varies see test columns	ug/kg			970		1.8 w/ MRL 13 / MDL 1.8	2.1 w/ MRL 16 / MDL 2.1	NT	NT	NT
Diethyl phthalate	EPA 8270C	varies see test columns	ug/kg			1,200		4.5 w/ MRL 13 / MDL 4.0	4.6 w/ MRL 16 / MDL 4.6	NT	NT	NT
Dimethyl phthalate	EPA 8270C	varies see test columns	ug/kg			1,400		3.4 w/ MRL 13 / MDL 2.1	3.9 w/ MRL 16 / MDL 3.9	NT	NT	NT
Di-n-butyl phthalate	EPA 8270C	varies see test columns	ug/kg			5,100		6.4 w/ MRL 13 / MDL 3.4	4.0 w/ MRL 16 / MDL 4.0	NT	NT	NT
Di-n-octyl phthalate	EPA 8270C	varies see test columns	ug/kg			6,200		2.1 w/ MRL 13 / MDL 2.1	2.5 w/ MRL 16 / MDL 2.5	NT	NT	NT
POLYCHLORINATED BIPHE	NYLS (PCB)											
Total PCBs ⁽⁴⁾			ug/kg	22.7	180	130	3,100	ND	ND	NT	NT	NT
Aroclor 1016	EPA 8082	varies see test columns	ug/kg					ND w/ MRL 13 / MDL 3.1	ND w/ MRL 16 / MDL 3.7	NT	NT	NT

			1	Sedin	ent Quality	Guidelines ((SOGs)	1				
Abbreviations used for SQG's:		Method		Stan	loni Quunij	Guideinies (5200)		Sam	nla Tecting P	aculte ⁽³⁾	
ERL = "effects range - medium"; ERM = "effects range - medium";		Limit /							Sam	pic resting its	suits	
SL = "screening level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Analytical	Detection		LILL	Liun	52		05-01	06-01	07-01	08-01	08-01
	Method ⁽¹⁾	Limit ^(1a)	Units ⁽²⁾	(Long et	al., 1999)	(PSDDA	A, 2000)	48-53'	18-23'	21-23'	8.8-10.8'	27.5-32.5'
Aroclor 1221		varies						ND w/	ND w/			
	EDA 2022	see test	wa/ka					MRL 26 /	MRL 31 /	NT	NIT	NT
A realer 1222	EPA 8082	varias	ug/kg					MDL 5.1	MDL 3./	NI	IN I	IN I
A100101 1232		see test						MRL 13 /	MRL 16 /			
	EPA 8082	columns	ug/kg					MDL 3.1	MDL 3.7	NT	NT	NT
Aroclor 1242		varies						ND w/	ND w/			
		see test						MRL 13 /	MRL 16 /			
	EPA 8082	columns	ug/kg					MDL 3.1	MDL 3.7	NT	NT	NT
Aroclor 1248		varies						ND w/	ND w/			
	EDA 9092	see test	ua/lea					MRL 13 /	MRL 16 /	NT	NIT	NT
A realer 1254	EPA 8082	varias	ug/kg					MDL 5.1	MDL 5.7	INI	INI	INI
A10clo1 1254		see test						MRL 13 /	MRL 16 /			
	EPA 8082	columns	ug/kg					MDL 3.1	MDL 3.7	NT	NT	NT
Aroclor 1260		varies						ND w/	ND w/			
		see test						MRL 13 /	MRL 16 /			
	EPA 8082	columns	ug/kg					MDL 3.1	MDL 3.7	NT	NT	NT
POLYNUCLEAR AROMATICS	HYDROCARBO	ONS (PAH)										
Total PAHs ⁽⁴⁾			ug/kg	4,022	44,792			193.92	243.92	NT	NT	NT
2-Methylnaphthalene		varies						33 w/	35 w/	NT	NT	NT
	EDA 9270C	see test		70	(70	(70	1 000	MRL 13 /	MRL 16 /			
A	EPA 82/0C	columns	ug/kg	/0	6/0	670	1,900	MDL 3.9	MDL 4.6	NT	NT	NT
Acenaphtnene		valles see test						5.4 W/ MRI 13 /	4.0 W/ MRI 16 /	IN I	INI	18.1
	EPA 8270C	columns	ug/kg	16	500	500	2.000	MDL 3.4	MDL 4.0			
Acenaphthylene		varies					,	2.1 w/	2.5 w/	NT	NT	NT
		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg	44	640	560	1,300	MDL 2.1	MDL 2.5			
Anthracene		varies						3.0 w/	3.5 w/	NT	NT	NT
	ED4 0070C	see test	4	05.2	1 100	0.00	12 000	MRL 13 /	MRL 16 /			
	EPA 82/0C	columns	ug/kg	85.3	1,100	960	13,000	MDL 3.0	MDL 3.5) IT) IT
Benzo(a)anthracene		varies						3.6 W/ MPI 13 /	0.1 W/ MRI 16 /	NI	NI	NI
	EPA 8270C	columns	uø/kø	261	1 600	1 300	5 100	MDL 14	MDL 17			
Benzo(a)pyrene		varies		201	1,000	1,000	2,100	1.3 w/	1.5 w/	NT	NT	NT
		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg	430	1,600	1,600	3,600	MDL 1.3	MDL 1.5			

				Sedin	ent Quality	Guidelines	(SQGs)					
Abbreviations used for SQC's: ERL = "effects range -low":		Reporting							Sam	ple Testing R	esults (3)	
ERM = "effects range - medium";		Limit /							1			
SL = "screening level"		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Analytical	Detection	(2)					05-01	06-01	07-01	08-01	08-01
	Method (1)	Limit ^(1a)	Units ⁽²⁾	(Long et	al., 1999)	(PSDD/	A, 2000)	48-53'	18-23'	21-23'	8.8-10.8'	27.5-32.5'
Benzo(b)fluoranthene		varies						12 w/	15 w/	NT	NT	NT
		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg			1,600	4,950	MDL 1.2	MDL 1.4			
Benzo(k)fluoranthene		varies						2.1 w/	2.5 w/	NT	NT	NT
	EDA 8270C	see test	ua/lea			1 600	4.050	MRL 13/	MRL 16 /			
Danga (a h-i)namilana	EFA 82/0C	columns	ug/kg			1,000	4,930	MDL 2.1	MDL 2.3	NT	NT	NT
Benzo(g,n,1)perylene		varies						5.1 W/ MPI 13 /	8.0 W/ MPI 16 /	IN I	IN I	IN I
	FPA 8270C	columns	110/kg			670	3 200	MDI 14	MDI 16			
Chrysene	LIT 0270C	varies	ug/Kg			070	5,200	$\frac{101DL}{24}$ w/	32 w/	NT	NT	NT
Chrysene		see test						MRL 13 /	MRL 16 /	141	111	141
	EPA 8270C	columns	ug/kg	384	2.800	1.400	21.000	MDL 1.4	MDL 1.7			
Dibenzo(a,h)anthracene		varies						1.3 w/	1.5 w/	NT	NT	NT
		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg	63.4	260	230	1,900	MDL 1.4	MDL 1.5			
Fluoranthene		varies						6.2 w/	7.0 w/	NT	NT	NT
		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg	600	5,100	1,700	30,000	MDL 3.2	MDL 3.7			
Fluorene		varies						6.2 w/	14 w/	NT	NT	NT
	ED4 00700	see test		10	5.40	5.40	2 (00	MRL 13 /	MRL 16 /			
	EPA 82/0C	columns	ug/kg	19	540	540	3,600	MDL 3.1	MDL 3.6			
Indeno(1,2,3-cd)pyrene		varies						0.62 w/	0.72 w/	NT	NT	NT
	EDA 8270C	see test	ua/lea			600	4 400	MRL 137	MRL 167			
Noul-thelene	EPA 82/0C	columns	ug/kg			000	4,400	MDL 0.62	MDL 0.72	NT	NT	NT
Naphthalene		varies						MRI 13 /	13 W/ MRI 16 /	INI	18.1	INI
	EPA 8270C	columns	119/kg	160	2 100	2 100	2 400	MDL 2.0	MDL 2.3			
Phenanthrene	Liniozyoe	varies	"B'11B	100	2,100	2,100	2,100	69 w/	80 w/	NT	NT	NT
		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg	240	1,500	1,500	21,000	MDL 2.7	MDL 3.1			
Pyrene		varies						10 w/	15 w/	NT	NT	NT
		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg	665	2,600	2,600	16,000	MDL 3.4	MDL 3.9			
PHENOLS												
Total Phenols ⁽⁴⁾			ug/kg			1582	5777	83.5	99.1	NT	NT	NT
2,4-Dimethylphenol		varies						20 w/	23 w/			
		see test						MRL 65 /	MRL 76 /			
	EPA 8270C	columns	ug/kg			29	210	MDL 20	MDL 23	NT	NT	NT

				Sedin	nent Quality	Guidelines	(SQGs)					
ERL = "effects range -low":		Reporting							Sam	ole Testing Re	esults (3)	
ERM = "effects range - medium";		Limit /										
SL = "screening level"	A	Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long of	al 1000)	(DSDD	A 2000)	05-01 48-53'	18-23	21-23	08-01 8 8-10 8'	27 5-32 5'
2-Methylphenol	methou	varies	Onto	(Long et	al., 1999)	(FSDD)	A, 2000)	3.1 w/	3.7 w/	21 25	0.0 10.0	21.0 02.0
2 Wearyphenor		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg			63	77	MDL 3.1	MDL 3.7	NT	NT	NT
4-Methylphenol		varies						3.1 w/	3.6 w/			
	EPA 8270C	see test	ug/kg			670	3 600	MRL 13/	MRL 16 /	NT	NT	NT
Pentachlorophenol	LIA 02/0C	varies	ug/Kg			070	5,000	3.0 w/	3.5 w/	111	111	111
i entaemorophenor		see test						MRL 130 /	MRL 150 /			
	EPA 8270C	columns	ug/kg			400	690	MDL 3.0	MDL 3.5	NT	NT	NT
2-Chlorophenol		varies						3.4 w/	4.0 w/			
	EPA 8270C	see test	ug/kg					MRL 13/ MDL 3/	MRL 16 / MDL 4.0	NT	NT	NT
4-Chloro-3-methylphenol	EI A 8270C	varies	ug/kg					3.6 w/	4 2 w/	111	111	INI
r emore s menyiphenor		see test						MRL 65 /	MRL 76 /			
	EPA 8270C	columns	ug/kg					MDL 3.6	MDL 4.2	NT	NT	NT
2,4-Dichlorophenol		varies						3.7 w/	4.3 w/			
	EPA 8270C	see test	ug/kg					MRL 13/ MDL 3.7	MRL 16 / MDL 4 3	NT	NT	NT
2-Nitrophenol	EI A 8270C	varies	ug/kg					3.3 w/	3.8 w/	111	IN I	111
		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg					MDL 3.3	MDL 3.8	NT	NT	NT
4-Nitrophenol		varies						3.0 w/	3.5 w/			
	EPA 8270C	see test	ug/kg					MRL 130 /	MRL 160 /	NT	NT	NT
2 4-Dinitrophenol	EI A 8270C	varies	ug/kg					20 w/	20 w/	111	111	111
2,4 Dintrophenor		see test						MRL 260 /	MRL 310 /			
	EPA 8270C	columns	ug/kg					MDL 17	MDL 20	NT	NT	NT
2-Methyl-4,6-dinitrophenol		varies						4.0 w/	4.7 w/			
	EPA 8270C	see test	ug/kg					MRL 130 /	MRL 160 / MDI 4 7	NT	NT	NT
2.4.5-Trichlorophenol	EI A 8270C	varies	ug/kg					4.8 w/	5.6 w/	111	111	111
2,4,5-11101101001101		see test						MRL 13 /	MRL 16 /			
	EPA 8270C	columns	ug/kg					MDL 4.8	MDL 5.6	NT	NT	NT
2,4,6-Trichlorophenol		varies						4.9 w/	5.7 w/			
	EDA 8270C	see test	ug/kg					MRL 13 /	MRL 13 / MDL 5 7	NT	NT	NT
Phenol	EI A 02/0C	varies	ug/kg					3.6 w/	9.5 w/	111	111	111
	EPA 8270C	see test	ug/kg					MRL 39 /	MRL 46 /	NT	NT	NT

Abbreviations and for SOClar		Mathad		Sedim	ent Quality	Guidelines (SQGs)					
ERL = "effects range -low";		Reporting							Sam	ple Testing Re	esults (3)	
ERM = "effects range - medium"; SL = "screening level"	Amelatical	Limit / Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	48-53'	18-23'	21-23'	8.8-10.8'	27.5-32.5'
		columns						MDL 3.6	MDL 4.2			

Fourth set of five samples--lower part of hole 08-01, hole 09-01:

Attachment 3, contin.—M	hment 3, contin.—Matilija Dam removal studytest results for potential											
contaminants in impounded	d sediments.											
				Sedim	ent Quality	Guidelines ((SQGs)					
ERL = "effects range -low";		Reporting							Sam	ple Testing Re	esults (3)	-
ERM = "effects range - medium"; SL = "screening level" ML = "maximum level"	Analytical Method ⁽¹⁾	Limit / Method Detection Limit ^(1a)	Units ⁽²⁾	ERL (Long et	ERM al., 1999)	SL (PSDD4	ML A, 2000)	MDH- 08-01 47.5-52.5'	MDH- 09-01 12.7-17.7'	MDH- 09-01 32.7-37.7'	MDH- 09-01 42.7-47.7'	MDH- 09-01 52.7-55'
PHYSICAL/CONVENTIONALS											·	
Total Solids (wet weight)	EPA 160.3M	0.01	%					76.2	86.2	65.5	72.3	77.8
Total Volatile Solids (wet weight)	SM 2540G	0.01	%					2.69	2.49	5.25	3.02	2.01
pH	EPA 9045	0.1	pH units					6.8	8.1	8.0	6.8	7.1
Ammonia		varies see tests						37.6 w/ MRL 0.5 /	6.4 w/ MRL 0.4 /	18.3 w/ MRL 0.4 /	23.4 w/ MRL 0.4 /	13.1 w/ MRL 0.4 /
	EPA 350.1M	column	mg/kg					MDL 0.5	MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.2
Total Organic Carbon	EPA 9060M	500/ 300	mg/kg					9100	3900	9600	8900	4300
Soluble Sulfides	EPA/CE-81-1	0.1	mg/kg					447	24	212	329	230
Total Sulfides	EPA 9030B	3	mg/kg					88	5	41	79	44
Calcium carbonate	ASTM D-4373	0.1	%					0.20	0.36	0.20	0.20	0.10
Oil and Grease	EPA 413.2	10	mg/kg					16	18	15	18	51
Total Recoverable Petroleum Hydrocarbons	EPA 413.1	10	mg/kg					16	16	15	18	48
METALS												
Antimony (Sb)	EPA 6020	varies see test columns	mg/kg			15	200	0.16 w/ MRL 0.06 / MDL 0.03	0.17 w/ MRL 0.06 / MDL 0.04	0.16 w/ MRL 0.06 / MDL 0.03	0.14 w/ MRL 0.06 / MDL 0.04	0.10 w/ MRL 0.05 / MDL 0.03
Arsenic (As)		varies						4.37 w/	5.72 w/	4.72 w/	3.98 w/	3.18 w/
	EPA 6020	see test columns	mg/kg	8.2	70	57	700	MRL 0.55 / MDL 0.06	MRL 0.61 / MDL 0.06	MRL 0.55 / MDL 0.06	MRL 0.59 / MDL 0.06	MRL 0.53 / MDL 0.05

Attachment 3, contin.—M	achment 3, contin.—Matilija Dam removal studytest results for potential aminants in impounded sediments.											
				Sedin	nent Ouality	Guidelines	(SOGs)	-				
Abbreviations used for SQG's: ERL = "effects range -low"; ERM = "effects range - medium"; SL = "screening level"		Analytical Detection Method ⁽¹⁾ Limit ^(1a) Unit			ERM	SL	ML	MDH-	Sam MDH-	ple Testing Re MDH-	esults ⁽³⁾ MDH-	MDH-
ML = "maximum level"	Analytical Method ⁽¹⁾	Detection Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	4, 2000)	08-01 47.5-52.5'	09-01 12.7-17.7'	09-01 32.7-37.7'	09-01 42.7-47.7'	09-01 52.7-55'
Cadmium (Cd)	EPA 6020	varies see test columns	mg/kg	1.2	9.6	5.1	14	0.20 w/ MRL 0.02 / MDL 0.01	0.27 w/ MRL 0.02 / MDL 0.01	0.20 w/ MRL 0.02 / MDL 0.01	0.18 w/ MRL 0.02 / MDL 0.01	0.16 w/ MRL 0.02 / MDL 0.01
Chromium (Cr)	FPA 6020	varies see test	mg/kg	81	370			14.4 w/ MRL 0.22 / MDL 0.01	18.4 w/ MRL 0.2 / MDL 0.01	16.6 w/ MRL 0.2 / MDL 0.1	15.3 w/ MRL 0.2 / MDL 0.1	14.2 w/ MRL 0.2 / MDL 0.1
Copper (Cu)	EPA 6020	varies see test	mg/kg	34	270	390	1 300	20.4 w/ MRL 0.22 / MDL 0.01	22.1 w/ MRL 0.2 /	22.3 w/ MRL 0.2 /	17.5 w/ MRL 0.2 / MDL 0.1	15.2 w/ MRL 0.2 /
Lead (Pb)	EPA 6020	varies see test	mg/kg	16.7	218	450	1,300	12.4 w/ MRL 0.06 / MDL 0.04	13.8 w/ MRL 0.06 / MDL 0.05	14.0 w/ MRL 0.06 / MDL 0.04	11.4 w/ MRL 0.06 / MDL 0.05	9.30 w/ MRL 0.05 / MDL 0.04
Mercury (Hg)	EPA 7471A	varies see test columns	mg/kg	0.15	0.71	0.41	2.3	0.04 w/ MRL 0.02 / MDL 0.01	0.05 w/ MRL 0.02 / MDL 0.01	0.04 w/ MRL 0.02 / MDL 0.01	0.06 w/ MRL 0.02 / MDL 0.01	0.18 w/ MRL 0.01 / MDL 0.01
Nickel (Ni)	EPA 6020	varies see test	mg/kg	20.9	51.6	140	370	16.3 w/ MRL 0.2 / MDL 0.2	19.5 w/ MRL 0.2 / MDL 0.2	16.3 w/ MRL 0.2 / MDL 0.2	14.8 w/ MRL 0.2 / MDL 0.2	13.4 w/ MRL 0.2 / MDL 0.2
Selenium (Se)	EPA 7742	varies see test columns	mg/kg					0.41 w/ MRL 0.11 / MDL 0.04	0.57 w/ MRL 0.12 / MDL 0.05	0.56 w/ MRL 0.11 / MDL 0.04	0.44 w/ MRL 0.12 / MDL 0.05	0.32 w/ MRL 0.11 / MDL 0.04
Silver (Ag)	EPA 6020	varies see test columns	mg/kg	1	3.7	6.1	8.4	0.07 w/ MRL 0.02 / MDL 0.01	0.08 w/ MRL 0.02 / MDL 0.01	0.09 w/ MRL 0.02 / MDL 0.01	0.06 w/ MRL 0.02 / MDL 0.01	0.05 w/ MRL 0.02 / MDL 0.01
Zinc (Zn)	EPA 6020	varies see test columns	mg/kg	150	410	410	3,800	57.2 w/ MRL 0.6 / MDL 0.2	68.3 w/ MRL 0.6 / MDL 0.2	59.2 w/ MRL 0.6 / MDL 0.2	51.4 w/ MRL 0.6 / MDL 0.2	45.2 w/ MRL 0.5 / MDL 0.2
ORGANICS												
PESTICIDES												
Total Chlorinated Pesticides (4)			ug/kg	6.8	108.1	56.9	69.0	ND	ND	ND	ND	ND
Aldrin	EDA 2021A	varies see test	ug/kg			10		ND w/ MRL 14 /	ND w/ MRL 13 /	ND w/ MRL 17 /	ND w/ MRL 12 /	ND w/ MRL 13 /
alpha BHC	LFA 0001A	varies see test	ug/Kg			10		ND w/ MRL 14 /	ND w/ MRL 13 /	ND w/ MRL 17 /	ND w/ MRL 12 /	ND w/ MRL 13 /
	EPA 8081A	columns	ug/kg					MDL 3.3	MDL 1.3	MDL 1.7	MDL 1.2	MDL 1.4
alpha-Chlordane	EPA 8081A	varies see test	ug/kg			10		ND w/ MRL 14 /	ND w/ MRL 13 /	ND w/ MRL 17 /	ND w/ MRL 12 /	ND w/ MRL 13 /

Attachment 3, contin.—M	chment 3, contin.—Matilija Dam removal studytest results for potential aminants in impounded sediments.											
				Sedim	ent Ouality	Guidelines ((SOGs)	-				
Abbreviations used for SQG's: ERL = "effects range -low"; ERM = "effects range - medium"; SL = "screening level"		Method Reporting Limit / Method		EDI	EDM	er	MI	MDH-	Sam MDH-	ple Testing Re	mDH-	MDH-
ML = "maximum level"	Analytical	Detection		EKL	EKIVI	SL	IVIL	08-01	09-01	09-01	09-01	09-01
	Method ⁽¹⁾	Limit ^(1a)	Units ⁽²⁾	(Long et	al., 1999)	(PSDDA	A, 2000)	47.5-52.5'	12.7-17.7'	32.7-37.7'	42.7-47.7'	52.7-55'
		columns						MDL 1.5	MDL 1.4	MDL 1.8	MDL 1.3	MDL 1.4
beta-BHC		varies						ND w/				
	FPA 8081A	columns	11g/kg					MRL 147 MDL 2.0	MRL 137 MDL 1.8	MRL 177 MDL 2.4	MRL 127 MDL 1.8	MRL 137 MDL 19
delta-BHC	LIA 0001A	varies	ug/kg					ND w/				
		see test						MRL 14 /	MRL 13 /	MRL 17 /	MRL 12 /	MRL 13 /
	EPA 8081A	columns	ug/kg					MDL 4.9	MDL 4.5	MDL 6.0	MDL 4.4	MDL 4.8
Dieldrin		varies						ND w/				
		see test						MRL 14 /	MRL 13 /	MRL 17 /	MRL 12 /	MRL 13 /
	EPA 8081A	columns	ug/kg	0.02	8.0	10		MDL 4.1	MDL 3.8	MDL 5.0	MDL 3.6	MDL 4.0
Endosulfan I		varies						ND w/				
		see test	a					MRL 14 /	MRL 13 /	MRL 17 /	MRL 12 /	MRL 13 /
	EPA 8081A	columns	ug/kg					MDL 2.2	MDL 1.5	MDL 2.0	MDL 1.5	MDL 1.6
Endosultan II		varies						ND W/	ND W/	ND W/ MDL 17 /	ND W/	ND W/ MDL 12 /
	FPA 8081A	columns	ug/kg					MRL 147 MDI 2.9	MDL 2.7	MDL 3.6	MRL 127 MDL 26	MDL 2.8
Endosulfan Sulfate	LIA 0001A	varies	ug/kg					ND w/	NDL 2.7	ND w/	ND w/	ND w/
Endosunan Sunate		see test						MRL 14 /	MRL 13 /	MRL 17 /	MRL 12 /	MRL 13 /
	EPA 8081A	columns	ug/kg					MDL 2.2	MDL 2.0	MDL 2.6	MDL 1.9	MDL 2.1
Endrin		varies						ND w/				
		see test						MRL 14 /	MRL 13 /	MRL 17 /	MRL 12 /	MRL 13 /
	EPA 8081A	columns	ug/kg					MDL 1.8	MDL 1.7	MDL 2.2	MDL 1.6	MDL 1.7
gamma-BHC Lindane		varies						ND w/				
		see test						MRL 14 /	MRL 13 /	MRL 17 /	MRL 12 /	MRL 13 /
	EPA 8081A	columns	ug/kg			10		MDL 14	MDL 3.0	MDL 4.0	MDL 2.9	MDL 3.2
gamma-Chlordane		varies						ND w/				
	EDA 8081A	see test	ug/kg					MRL 147 MDL 2.0	MRL 137 MDI 18	MRL 177 MDL 24	MRL 127 MDL 1.8	MRL 137 MDL 19
Hantachlor	EIA 6061A	varies	ug/kg					ND w/	NDL 1.8	ND w/	ND w/	ND w/
rieptaemor		see test						MRL 14 /	MRL 13 /	MRL 17 /	MRL 12 /	MRL 13 /
	EPA 8081A	columns	ug/kg			10		MDL 1.8	MDL 1.7	MDL 2.2	MDL 1.6	MDL 1.8
Toxaphene		varies				-		ND w/				
· ·		see test						MRL 660 /	MRL 610 /	MRL 810 /	MRL 590/	MRL 640 /
	EPA 8081A	columns	ug/kg					MDL 75	MDL 69	MDL 91	MDL 66	MDL 72
Total DDT ⁽⁵⁾		varies										
		see test	-									
	EPA 8081A	columns	ug/kg	1.58	46.1	6.9	69.0	ND	ND	ND	ND	ND
4,4'-DDD	EPA 8081A	varies	ug/kg	1.0	7.0			ND w/				

Attachment 3, contin.—M contaminants in impounded	ment 3, contin.—Matilija Dam removal studytest results for potential inants in impounded sediments.											
•				Sedim	ent Quality	Guidelines ((SQGs)					
Abbreviations used for SQG's:		Method							Sam	nle Testing Re	sults ⁽³⁾	
ERM = "effects range - modium"; SL = "screening level" ML = "maximum level"	Analytical	Limit / Method Detection		ERL	ERM	SL	ML	MDH- 08-01	MDH- 09-01	MDH- 09-01	MDH- 09-01	MDH- 09-01
	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	47.5-52.5'	12.7-17.7'	32.7-37.7'	42.7-47.7'	52.7-55'
		see test columns						MRL 14 / MDL 2.0	MRL 13 / MDL 1.9	MRL 17 / MDL 2.5	MRL 12 / MDL 1.8	MRL 13 / MDL 2.0
4,4'-DDE	FPA 8081A	varies see test	ug/kg	2.2	27			ND w/ MRL 14 / MDL 3 3	ND w/ MRL 13 / MDL 3 0	ND w/ MRL 17 / MDL 4.0	ND w/ MRL 12 / MDL 2 9	ND w/ MRL 13 / MDL 3 2
4,4'-DDT	LIA 000IA	varies see test	ug/Kg	2.2	21			ND w/ MRL 14 /	ND w/ MRL 13 /	ND w/ MRL 17 /	ND w/ MRL 12/	NDL 3.2 ND w/ MRL 13 /
	EPA 8081A	columns	ug/kg	2.0	20			MDL 2.3	MDL 2.1	MDL 2.8	MDL 2.0	MDL 2.2
Heptachlor Epoxide		varies see test	-					ND w/ MRL 14 /	ND w/ MRL 13 /	ND w/ MRL 17 /	ND w/ MRL 12 /	ND w/ MRL 13 /
	EPA 8081A	columns	ug/kg					MDL 1.8	MDL 1.7	MDL 2.2	MDL 1.6	MDL 1.8
Endrin Aldehyde	EPA 8081A	see test columns	ug/kg					ND w/ MRL 14 / MDL 4.7	ND w/ MRL 13 / MDL 4.3	ND w/ MRL 17 / MDL 5.7	ND w/ MRL 12 / MDL 4.2	ND w/ MRL 13 / MDL 4.6
Endrin Ketone	EDA 0001A	varies see test						ND w/ MRL 14 /	ND w/ MRL 13 /	ND w/ MRL 17 /	ND w/ MRL 12 /	ND w/ MRL 13 /
Mathanna hIan	EPA 8081A	columns	ug/kg					MDL 2.9	MDL 2.0	MDL 2.6	MDL 2./	MDL 2.1
wemoxyemor	EPA 8081A	see test columns	ug/kg					MRL 14 / MDL 2.2	MRL 13 / MDL 2.0	MRL 17 / MDL 2.6	MRL 12 / MDL 1.9	MRL 13 / MDL 2.1
ORGANOTINS												
Total Organotins (4)			ug/kg					NT	NT	NT	NT	ND
Monobutyltin (n-Butyltin)	Krone	1.3 / 0.39 for 09-01	ug/kg					NT	NT	NT	NT	ND
Di-n-butyltin	Krone	1.3 / 0.40 for 09-01	ug/kg					NT	NT	NT	NT	ND
Tri-n-butyltin	Krone	1.3 / 0.41 for 09-01	ug/kg			0		NT	NT	NT	NT	ND
Tetra-n-butyltin	Krone	1.3 / 0.50 for 09-01	ug/kg			0.15 (7)		NT	NT	NT	NT	ND
PHTHALATES												
Total phthalates ⁽⁴⁾	EPA 8270C	varies	ug/kg			23,170		NT	NT	NT	NT	397.4
Bis (2-ethylhexyl) phthalate	EPA 8270C	260 / 160 for 09-01	ug/kg			8,300		NT	NT	NT	NT	310
Butyl benzyl phthalate	EPA 8270C	13 / 1.8 for 09-01	ug/kg			970		NT	NT	NT	NT	1.8
Diethyl phthalate	EPA 8270C	13 / 3.9 for	ug/kg			1,200		NT	NT	NT	NT	5.6

contaminants in impounded sediments. Minimipunded sediments. Sediment Quideines (SOG) Sediment Quideines (SOG) Sediment Quideines (SOG) Minimipunded sediments. Minimipunde Sediments. Minin Minimipunde Sediments.	Attachment 3, contin.—M	latilija Dam											
betwee values and or SQCs: ERL = "effects range -ode": Subservations used or SQCs: Init" Method Reporting Init" Method Reporting Init" Self="body-split-sp	contaminants in impounde	d sediments.											
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c } \hline c c c c c c c c c c c c c c c c c c $	Abbraviations used for SOC's:		Mathad		Sedim	ent Quality	Guidelines ((SQGs)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ERL = "effects range -low";		Reporting							Samj	ple Testing Re	esults (3)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ERM = "effects range - medium";		Limit /										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SL = "screening level" ML = "maximum level"	Analytical	Method		ERL	ERM	SL	ML	MDH- 08-01	MDH- 09-01	MDH- 09-01	MDH- 09-01	MDH- 09-01
Dimethyl phthalate 09-01 00-01 <td>ML – maximum level</td> <td>Method ⁽¹⁾</td> <td>Limit^(1a)</td> <td>Units (2)</td> <td>(Long et</td> <td>al 1999)</td> <td>(PSDD/</td> <td>A 2000)</td> <td>47.5-52.5'</td> <td>12.7-17.7'</td> <td>32.7-37.7'</td> <td>42.7-47.7'</td> <td>52.7-55'</td>	ML – maximum level	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al 1999)	(PSDD/	A 2000)	47.5-52.5'	12.7-17.7'	32.7-37.7'	42.7-47.7'	52.7-55'
Dimethyl phthalate EPA 8270C 090-01 ug/kg 1,400 NT			09-01		(Long et	un, 1999)	(10001	1, 2000)					
EPA 8270C 09-01 ug/kg 1,400 NT NT <td>Dimethyl phthalate</td> <td></td> <td>13 / 3.3 for</td> <td></td>	Dimethyl phthalate		13 / 3.3 for										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EPA 8270C	09-01	ug/kg			1,400		NT	NT	NT	NT	3.3
Di-n-octyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate NI	Di-n-butyl phthalate	ED 4 00700	13 / 3.3 for				5 100		NT) IT	NT	N	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EPA 8270C	09-01	ug/kg			5,100		NT	NT	NT	NT	5.7
POLYCHLORINATED BIPHENYLS (PCB) 1 2g/g 2 2.7 180 130 NT NT <td>DI-n-octyl phinalate</td> <td>EPA 8270C</td> <td>13/2.110r 09-01</td> <td>uø/kø</td> <td></td> <td></td> <td>6 200</td> <td></td> <td>NT</td> <td>NT</td> <td>NT</td> <td>NT</td> <td>71</td>	DI-n-octyl phinalate	EPA 8270C	13/2.110r 09-01	uø/kø			6 200		NT	NT	NT	NT	71
Total PCBs ⁽⁴⁾ ug/kg 22.7 180 130 3,100 NT NT <th< td=""><td>POLYCHLORINATED BIPHE</td><td>NYLS (PCB)</td><td>0, 01</td><td>48/11B</td><td></td><td></td><td>0,200</td><td></td><td></td><td></td><td></td><td></td><td>11</td></th<>	POLYCHLORINATED BIPHE	NYLS (PCB)	0, 01	48/11B			0,200						11
Aroclor 1016 EPA 8082 13 / 3.1 for 09-01 ug/kg NT	Total PCBs ⁽⁴⁾			ug/kg	22.7	180	130	3,100	NT	NT	NT	NT	ND
Image: constraint of the second sec	Aroclor 1016		13 / 3.1 for										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EPA 8082	09-01	ug/kg					NT	NT	NT	NT	ND
Aroclor 1232 EPA 8082 09-01 ug/kg NI NI<	Aroclor 1221	ED4 0002	26 / 3.1 for	а					NT	NT	NT	NT	ND
Interference EPA 8082 19, 3, 1, 10r ug/kg Image: Marcolor 1242 NT	Arealar 1222	EPA 8082	09-01	ug/kg					NI	NI	NI	NI	ND
Aroclor 1242 ID / 1000 100 / 1000 100 / 1000 100 / 1000 100 / 1000 100 / 1000 10000 1000 1000 <th< td=""><td>ATOCIOI 1232</td><td>EPA 8082</td><td>09-01</td><td>ug/kg</td><td></td><td></td><td></td><td></td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>ND</td></th<>	ATOCIOI 1232	EPA 8082	09-01	ug/kg					NT	NT	NT	NT	ND
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Aroclor 1242	Liff 0002	13/3.1 for	48/11B									112
Aroclor 1248 EPA 8082 13 / 3.1 for 09-01 ug/kg Image: constraint of the system		EPA 8082	09-01	ug/kg					NT	NT	NT	NT	ND
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Aroclor 1248		13 / 3.1 for										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EPA 8082	09-01	ug/kg					NT	NT	NT	NT	ND
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Aroclor 1254	EDA 8082	13/3.1 for	ug/kg					NT	NT	NT	NT	ND
Index 1900 EPA 8082 09-01 ug/kg Image: constraint of the state of the	Aroclor 1260	LI A 0002	13/31 for	ug/kg					111	141	111	141	ND
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		EPA 8082	09-01	ug/kg					NT	NT	NT	NT	ND
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	POLYNUCLEAR AROMATIC	S HYDROCARB	ONS (PAH)										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total PAHs ⁽⁴⁾			ug/kg	4,022	44,792			NT	NT	NT	NT	180.51
Image: constraint of the constraint	2-Methylnaphthalene		13 / 3.9 for						NT	NT	NT	NT	34
Accenaphtene EPA 8270C 09-01 ug/kg 16 500 500 2,000 N1		EPA 8270C	09-01	ug/kg	70	670	670	1,900	NT	ЪIТ	NT	NT	2.5
Acenaphthylene II X 8270C 09-01 ug/kg 10 500 500 2,000 NT NT NT NT 2.3 Acenaphthylene EPA 8270C 09-01 ug/kg 44 640 560 1,300 NT NT NT NT 2.3 Anthracene 13 / 3.0 for EPA 8270C 09-01 ug/kg 85.3 1,100 960 13,000 NT NT NT NT 3.0 Benzo(a)anthracene 13 / 1.4 for EPA 8270C 09-01 ug/kg 261 1,600 1,300 5,100 NT NT NT NT 4.6 Benzo(a)pyrene 13 / 1.3 for EPA 8270C 09-01 ug/kg 430 1 600 1 600 3 600 NT NT NT NT 3.8	Acenaphthene	EPA 8270C	13/3.3 for	ug/kg	16	500	500	2 000	NT	NT	NT	NT	3.5
Inclusion EPA 8270C 09-01 ug/kg 44 640 560 1,300 NT NT NT NT 2.5 Anthracene 13 / 3.0 for EPA 8270C 13 / 3.0 for 09-01 ug/kg 85.3 1,100 960 13,000 NT NT NT NT 3.0 Benzo(a)anthracene 13 / 1.4 for EPA 8270C 09-01 ug/kg 261 1,600 1,300 5,100 NT NT NT 4.6 Benzo(a)pyrene 13 / 1.3 for EPA 8270C 09-01 ug/kg 430 1 600 1 600 3 600 NT NT NT NT 3.8	Acenanhthylene	EI A 8270C	13/21 for	ug/kg	10	500	500	2,000	NT	NT	NT	NT	23
Anthracene EPA 8270C 13 / 3.0 for 09-01 ug/kg 85.3 1,100 960 13,000 NT NT NT NT NT 3.0 Benzo(a)anthracene EPA 8270C 09-01 ug/kg 261 1,600 1,300 NT NT NT NT NT 4.6 Benzo(a)anthracene 13 / 1.4 for 09-01 ug/kg 261 1,600 1,300 5,100 NT NT NT 4.6 Benzo(a)pyrene 13 / 1.3 for EPA 8270C 09-01 ug/kg 430 1 600 3 600 NT NT NT NT 3.8	reenupititytene	EPA 8270C	09-01	ug/kg	44	640	560	1,300		141		111	2.5
Image: Problem state EPA 8270C 09-01 ug/kg 85.3 1,100 960 13,000 Image: Problem state Image: Problem state <t< td=""><td>Anthracene</td><td></td><td>13 / 3.0 for</td><td></td><td></td><td></td><td></td><td></td><td>NT</td><td>NT</td><td>NT</td><td>NT</td><td>3.0</td></t<>	Anthracene		13 / 3.0 for						NT	NT	NT	NT	3.0
Benzo(a)anthracene 13 / 1.4 for EPA 8270C 13 / 1.4 for 09-01 M NT NT NT 4.6 Benzo(a)pyrene 13 / 1.3 for EPA 8270C 13 / 1.3 for 1600 1,600 1,600 5,100 NT NT NT 4.6		EPA 8270C	09-01	ug/kg	85.3	1,100	960	13,000					
EPA 82/0C 09-01 ug/kg 261 1,600 1,300 5,100 Image: Constraint of the state of the st	Benzo(a)anthracene	EDA 02700	13 / 1.4 for	л	2(1	1.000	1 200	5 100	NT	NT	NT	NT	4.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Banzo(a)pyrano	EPA 82/0C	09-01 13 / 1 2 for	ug/kg	261	1,600	1,300	5,100	NT	NT	NT	NT	3 0
	Denzo(a)pyrene	EPA 8270C	09-01	ug/kg	430	1,600	1,600	3,600	1 1 1	1 1 1	1 1 1	1 1 1	5.0

-

Attachment 3, contin.—M	latilija Dam											
			T	Sedim	nent Quality	Guidelines	(SOGs)					
Abbreviations used for SQG's: ERL = "effects range -low";		Method Reporting							Sam	ole Testing Re	esults (3)	
ERM = "effects range - medium"; SL = "screening level" ML = "maximum level"	Analytical	Limit / Method		ERL	ERM	SL	ML	MDH- 08-01	MDH- 09-01	MDH- 09-01	MDH- 09-01	MDH- 09-01
	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDD)	4, 2000)	47.5-52.5'	12.7-17.7'	32.7-37.7'	42.7-47.7'	52.7-55'
Benzo(b)fluoranthene	EPA 8270C	13 / 1.2 for 09-01	ug/kg			1,600	4,950	NT	NT	NT	NT	9.5
Benzo(k)fluoranthene	EPA 8270C	13 / 2.1 for 09-01	ug/kg			1,600	4,950	NT	NT	NT	NT	2.6
Benzo(g,h,i)perylene	EPA 8270C	13 / 1.4 for 09-01	ug/kg			670	3,200	NT	NT	NT	NT	6.3
Chrysene	EPA 8270C	13 / 1.4 for 09-01	ug/kg	384	2,800	1,400	21,000	NT	NT	NT	NT	24
Dibenzo(a,h)anthracene	EPA 8270C	13 / 1.3 for 09-01	ug/kg	63.4	260	230	1,900	NT	NT	NT	NT	1.3
Fluoranthene	EPA 8270C	13 / 3.1 for 09-01	ug/kg	600	5,100	1,700	30,000	NT	NT	NT	NT	7.1
Fluorene	EPA 8270C	13 / 3.1 for 09-01	ug/kg	19	540	540	3,600	NT	NT	NT	NT	4.5
Indeno(1,2,3-cd)pyrene	EPA 8270C	13 / 0.61 for 09-01	ug/kg			600	4,400	NT	NT	NT	NT	0.61
Naphthalene	EPA 8270C	13 / 1.9 for 09-01	ug/kg	160	2,100	2,100	2,400	NT	NT	NT	NT	8.8
Phenanthrene	EPA 8270C	13 / 2.6 for 09-01	ug/kg	240	1,500	1,500	21,000	NT	NT	NT	NT	55
Pyrene	EPA 8270C	13 / 3.3 for 09-01	ug/kg	665	2,600	2,600	16,000	NT	NT	NT	NT	9.6
PHENOLS												
Total Phenols ⁽⁴⁾			ug/kg			1582	5777	NT	NT	NT	NT	83.3
2,4-Dimethylphenol	EPA 8270C	64 / 20 for 09-01	ug/kg			29	210	NT	NT	NT	NT	20
2-Methylphenol	EPA 8270C	13 / 3.1 for 09-01	ug/kg			63	77	NT	NT	NT	NT	3.1
4-Methylphenol	EPA 8270C	13 / 3.0 for 09-01	ug/kg			670	3,600	NT	NT	NT	NT	5.2
Pentachlorophenol	EPA 8270C	64 / 3.0 for 09-01	ug/kg			400	690	NT	NT	NT	NT	3.0
2-Chlorophenol	EPA 8270C	13 / 3.4 for 09-01	ug/kg					NT	NT	NT	NT	3.4
4-Chloro-3-methylphenol	EPA 8270C	13 / 3.6 for 09-01	ug/kg					NT	NT	NT	NT	3.6
2,4-Dichlorophenol	EPA 8270C	13 / 3.6 for	ug/kg					NT	NT	NT	NT	3.6

Attachment 3, contin.—Matilija Dam removal studytest results for potential												
contaminants in impounde	d sediments.											
Abbraviations used for SOC's:	Analytical Method ⁽¹⁾	Method Reporting Limit / Method Detection Limit ^(1a)	Units ⁽²⁾	Sedin	ent Quality	Guidelines ((SQGs)					
ERL = "effects range -low";								Sample Testing Results (3)				
ERM = "effects range - medium"; SL = "screening level"				ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
ML – maximum level				(Long et al., 1999)		(PSDDA, 2000)		47.5-52.5'	12.7-17.7'	32.7-37.7'	42.7-47.7'	52.7-55'
		09-01										
2-Nitrophenol	EPA 8270C	13 / 3.2 for 09-01	ug/kg					NT	NT	NT	NT	3.2
4-Nitrophenol	EPA 8270C	130 / 3.0 for 09-01	ug/kg					NT	NT	NT	NT	3.0
2,4-Dinitrophenol	EPA 8270C	260 / 17 for 09-01	ug/kg					NT	NT	NT	NT	17
2-Methyl-4,6-dinitrophenol	EPA 8270C	130 / 4.0 for 09-01	ug/kg					NT	NT	NT	NT	4.0
2,4,5-Trichlorophenol	EPA 8270C	13 / 4.7 for 09-01	ug/kg					NT	NT	NT	NT	4.7
2,4,6-Trichlorophenol	EPA 8270C	13 / 4.8 for 09-01	ug/kg					NT	NT	NT	NT	4.8
Phenol	EPA 8270C	39 / 3.6 for 09-01	ug/kg					NT	NT	NT	NT	4.7

Fifth set of five samples-- holes 10-01, 11-01:

			Mathad		Sediment Quality Guidelines (SQGs)								
A	breviations used for SQG's:		Reporting					ľ	Sample Testing Results ⁽³⁾				
El El	RL = "effects range - low"; RM = "effects range - medium";	Amplytical	Limit / Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
M	L = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	11.3-12.8'	22.8-27.8'	37.8-40.8'	47.8-52.8'	13-16.2'
PH	YSICAL/CONVENTIONALS												
	Total Solids (wet weight)	EPA 160.3M	0.01	%					75.6	75.6	80.9	78.6	87.2
	Total Volatile Solids (wet weight)	SM 2540G	0.01	%					5.80	2.52	2.30	2.40	2.08
	pH	EPA 9045	0.1	pH units					7.6	7.8	8.0	7.7	8.0
	Ammonia	EPA 350.1M	0.2 / 0.2	mg/kg					6.1	5.4	7.4	9.5	1.2
	Total Organic Carbon	EPA 9060M	500/ 300	mg/kg					4600	5000	5200	9630	4500
	Soluble Sulfides	EPA/CE-81-1	0.1	mg/kg					7.7	325	54	55	1
				Sedin	nent Quality	Guidelines ((SQGs)						
---	-----------------------	--------------------------------	-----------	----------	--------------	--------------	----------	--------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	--------------------------------------	
Abbreviations used for SOG's:		Reporting							Sam	ple Testing Re	esults (3)		
ERL = "effects range - low"; ERM = "effects range - medium"; SL = "screening level"	Analytical	Limit / Method Detection		ERL	ERM	SL	ML	MDH- 10-01	MDH- 10-01	MDH- 10-01	MDH- 10-01	MDH- 11-01	
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	11.3-12.8	22.8-27.8	37.8-40.8	47.8-52.8	13-16.2'	
Total Sulfides	EPA 9030B	3	mg/kg					ND	28	5	6	2	
Calcium carbonate	ASTM D-4373	0.1	%					0.20	0.10	0.10	0.20	0.10	
Oil and Grease	EPA 413.2	10	mg/kg					23	31	35	54	18	
Total Recoverable Petroleum Hydrocarbons	EPA 413.1	10	mg/kg					18	26	35	49	16	
METALS													
Antimony (Sb)	EPA 6020	varies see test columns	mg/kg			15	200	0.13 w/ MRL 0.05 / MDL 0.03	0.15 w/ MRL 0.06 / MDL 0.03	0.11 w/ MRL 0.06 / MDL 0.04	0.10 w/ MRL 0.06 / MDL 0.03	0.12 w/ MRL 0.06 / MDL 0.03	
Arsenic (As)	EPA 6020	varies see test columns	mg/kg	8.2	70	57	700	5.5 w/ MRL 0.5 / MDL 0.2	7.0 w/ MRL 0.6 / MDL 0.2	5.1 w/ MRL 0.6 / MDL 0.2	3.5 w/ MRL 0.6 / MDL 0.2	6.2 w/ MRL 0.6 / MDL 0.2	
Cadmium (Cd)	EPA 6020	varies see test columns	mg/kg	1.2	9.6	5.1	14	0.19 w/ MRL 0.05 / MDL 0.03	0.27 w/ MRL 0.06 / MDL 0.03	0.19 w/ MRL 0.06 / MDL 0.04	0.16 w/ MRL 0.05 / MDL 0.03	0.22 w/ MRL 0.06 / MDL 0.03	
Chromium (Cr)	EPA 6020	varies see test columns	mg/kg	81	370			17.3 w/ MRL 0.21 / MDL 0.04	24.7 w/ MRL 0.23 / MDL 0.05	16.8 w/ MRL 0.24 / MDL 0.05	18.1 w/ MRL 0.22 / MDL 0.04	21.6 w/ MRL 0.23 / MDL 0.05	
Copper (Cu)	EPA 6020	varies see test columns	mg/kg	34	270	390	1,300	17.8 w/ MRL 0.11 / MDL 0.05	26.4 w/ MRL 0.12 / MDL 0.06	18.4 w/ MRL 0.12 / MDL 0.06	17.9 w/ MRL 0.11 / MDL 0.06	23.9 w/ MRL 0.12 / MDL 0.06	
Lead (Pb)	EPA 6020	varies see test columns	mg/kg	46.7	218	450	1,200	10.6 w/ MRL 0.05 / MDL 0.04	14.6 w/ MRL 0.06 / MDL 0.05	10.1 w/ MRL 0.06 / MDL 0.05	9.83 w/ MRL 0.06 / MDL 0.04	13.1 w/ MRL 0.06 / MDL 0.05	
Mercury (Hg)	EPA 7471A	varies see test columns	mg/kg	0.15	0.71	0.41	2.3	0.049 w/ MRL 0.012 / MDL 0.006	0.049 w/ MRL 0.015 / MDL 0.008	0.082 w/ MRL 0.017 / MDL 0.009	0.039 w/ MRL 0.015 / MDL 0.007	0.153 w/ MRL 0.018 / MDL 0.009	
Nickel (Ni)	EPA 6020	varies see test columns	mg/kg	20.9	51.6	140	370	15.9 w/ MRL 0.5 / MDL 0.3	23.5 w/ MRL 0.6 / MDL 0.3	16.8 w/ MRL 0.6 / MDL 0.4	16.7 w/ MRL 0.6 / MDL 0.3	22.1 w/ MRL 0.3 / MDL 0.3	
Selenium (Se)	EPA 7742	varies see test columns	mg/kg					0.40 w/ MRL 0.21 / MDL 0.03	0.43 w/ MRL 0.23 / MDL 0.03	0.37 w/ MRL 0.24 / MDL 0.04	0.42 w/ MRL 0.22 / MDL 0.03	0.2 w/ MRL 0.2 / MDL 0.1	
Silver (Ag)	EPA 6020	varies see test columns	mg/kg	1	3.7	6.1	8.4	0.06 w/ MRL 0.02 / MDL 0.01	0.08 w/ MRL 0.02 / MDL 0.01	0.07 w/ MRL 0.02 / MDL 0.01	0.06 w/ MRL 0.02 / MDL 0.01	0.06 w/ MRL 0.02 / MDL 0.01	
Zinc (Zn)	EPA 6020	varies	mg/kg	150	410	410	3,800	53.6 w/	75.3 w/	54.4 w/	51.3 w/	77.2 w/	

				C 1'	10 11	0.11. (٦				
		Method		Sedim	ent Quality	Guidelines (SQGs)	_				
Abbreviations used for SQG's:		Reporting							Sam	ple Testing Re	esults (3)	-
ERL = "effects range -low";		Limit /										
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection	· · · (2)					10-01	10-01	10-01	10-01	11-01
ML = "maximum level"	Method (1)	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	11.3-12.8	22.8-27.8	37.8-40.8	47.8-52.8	13-16.2
		see test						MRL 0.5 /	MRL 0.6 /	MRL 0.6 /	MRL 0.6 /	MRL 0.6 /
		columns						MDL 0.3	MDL 0.3	MDL 0.4	MDL 0.3	MDL 0.3
ORGANICS												
PESTICIDES												
Total Chlorinated Pesticides (4)		varies										
		see tests										
	EPA 8081A	column	ug/kg	6.8	108.1	56.9	69.0	ND	ND	ND	ND	ND
Aldrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg			10		MDL 3.0	MDL 3.8	MDL 2.8	MDL 3.1	MDL 0.27
alpha BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	ED 4 0001 4	see tests	a					MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 1.3	MDL I./	MDL 1.2	MDL 1.4	MDL 0.12
alpha-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EDA 0001A	see tests				10		MRL 13/	MRL 1//	MRL 127	MRL 14 /	MRL 1.27
	EPA 8081A	·	ug/kg			10		MDL 1.4	MDL 1.8	MDL 1.3	MDL 1.5	MDL 0.13
beta-BHC		varies						ND W/	ND W/	ND W/	ND W/	ND W/
	EDA 8081A	column	ug/kg					MDL 13	MDL 2.4	MDI 18	MDL 2.0	MRL 1.27 MDL 0.17
dalta DUC	LFA 0001A	vorios	ug/kg					NDL 1.5	MDL 2.4	MDL 1.6	MDL 2.0	NDL 0.17
dena-BIIC		valles						MRI 13 /	MRI 17/	MRI 12 /	MRI 14 /	MRI 12/
	EPA 8081A	column	uø/kø					MDL 4 7	MDL 6.0	MDL 44	MDL 4 9	MDL 0.43
Dieldrin	Liff oconi	varies	<u>"B" "B</u>					ND w/	ND w/	ND w/	ND w/	ND w/
Diciti		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg	0.02	8.0	10		MDL 3.9	MDL 5.0	MDL 3.6	MDL 4.1	MDL 0.45
Endosulfan I		varies	00					ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 1.6	MDL 2.0	MDL 1.5	MDL 1.7	MDL 0.15
Endosulfan II		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 2.8	MDL 3.6	MDL 2.6	MDL 2.9	MDL 0.26
Endosulfan Sulfate		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 2.1	MDL 2.6	MDL 1.9	MDL 2.2	MDL 0.19
Endrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 1.7	MDL 2.2	MDL 1.6	MDL 1.8	MDL 0.16
gamma-BHC Lindane	EPA 8081A	varies	ug/kg			10		ND w/	ND w/	ND w/	ND w/	ND w/

				Sedin	nent Quality	Guidelines ((SQGs)					
Abbreviations used for SOG's:		Reporting							Sam	ple Testing Re	esults (3)	
ERL = "effects range -low";		Limit /							Í			
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection			1			10-01	10-01	10-01	10-01	11-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	11.3-12.8'	22.8-27.8'	37.8-40.8'	47.8-52.8'	13-16.2'
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
		column						MDL 3.1	MDL 4.0	MDL 2.9	MDL 3.3	MDL 0.98
gamma-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 1.9	MDL 2.4	MDL 1.8	MDL 2.0	MDL 0.70
Heptachlor		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests				10		MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg			10		MDL 1.8	MDL 2.2	MDL 1.6	MDL 1.8	MDL 0.16
Toxaphene		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	ED4 00014	see tests						MRL 630 /	MRL 810/	MRL 590 /	MRL 660 /	MRL 58 /
	EPA 8081A	column	ug/kg					MDL /1	MDL 91	MDL 66	MDL /5	MDL 6.5
Total DDT ⁽³⁾		varies										
	EDA 2021A	see tests	ug/kg	1.59	46.1	6.0	60.0	ND	ND	ND	ND	ND
4.41.000	EPA 0001A	column	ug/kg	1.38	40.1	0.9	09.0	ND m/	ND m/	ND m/	ND m/	ND m/
4,4 -DDD		varies						ND W/	ND W/ MDI 17 /	ND W/ MDI 12 /	MDL 14 /	ND W/
	FPA 8081A	column	ug/kg	1.0	7.0			MDI 2.0	MDL 2.5	MDI 18	MDL 2.0	MDL 0.18
4.4' DDE	LIA 0001A	varies	ug/Kg	1.0	7.0			ND w/	ND w/	ND w/	ND w/	ND w/
4,4-DDE		valles						MRI 13 /	MRI 17/	MRI 12 /	MRI 14 /	MRI 12/
	EPA 8081A	column	110/ko	2.2	27			MDL 3.1	MDL 4.0	MDL 2.9	MDL 3.3	MDL 0.29
4 4'-DDT	Errrotonin	varies	"B'11B	2.2	/			ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 12/
	EPA 8081A	column	ug/kg	2.0	20			MDL 2.2	MDL 2.8	MDL 2.0	MDL 2.3	MDL 0.20
Heptachlor Epoxide		varies						ND w/	ND w/	ND w/	ND w/	ND w/
T. T. T. T. T.		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 1.8	MDL 2.3	MDL 1.6	MDL 1.8	MDL 0.95
Endrin Aldehyde		varies						ND w/	ND w/	ND w/	ND w/	ND w/
5		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 4.5	MDL 5.7	MDL 4.2	MDL 4.7	MDL 0.41
Endrin Ketone		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 2.1	MDL 2.6	MDL 1.9	MDL 2.8	MDL 1.2
Methoxychlor		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 2.1	MDL 2.6	MDL 1.9	MDL 2.2	MDL 1.1
ORGANOTINS												
Total Organotins (4)			ug/kg					ND	ND	ND	ND	NT
Monobutyltin (n-Butyltin)	Krone	varies	ug/kg					ND w/	ND w/	ND w/	ND w/	NT

		1	1					٦				
		Method		Sedim	ent Quality	Guidelines ((SQGs)	_				
Abbreviations used for SQG's:		Reporting							Sam	ple Testing Re	esults ⁽³⁾	
ERL = "effects range -low";		Limit /										
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection	(2)					10-01	10-01	10-01	10-01	11-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units ⁽²⁾	(Long et	al., 1999)	(PSDDA	A, 2000)	11.3-12.8'	22.8-27.8'	37.8-40.8'	47.8-52.8'	13-16.2'
		see tests						MRL 1.3 /	MRL 1.6 /	MRL 1.2 /	MRL 1.3 /	
		column						MDL 0.38	MDL 0.49	MDL 0.36	MDL 0.40	
Di-n-butyltin		varies						ND w/	ND w/	ND w/	ND w/	
		see tests						MRL 1.3 /	MRL 1.6 /	MRL 1.2 /	MRL 1.3 /	
	Krone	column	ug/kg					MDL 0.39	MDL 0.50	MDL 0.36	MDL 0.41	NT
Tri-n-butyltin		varies						ND w/	ND w/	ND w/	ND w/	
		see tests						MRL 1.3 /	MRL 1.6 /	MRL 1.2 /	MRL 1.3 /	
	Krone	column	ug/kg			(7)		MDL 0.41	MDL 0.52	MDL 0.38	MDL 0.42	NT
Tetra-n-butyltin	Krone	varies	ug/kg			0.15 (7)		ND w/	ND w/	ND w/	ND w/	NT
		see tests						MRL 1.3 /	MRL 1.6 /	MRL 1.2 /	MRL 1.3 /	
		column						MDL 0.49	MDL 0.63	MDL 0.46	MDL 0.51	
PHTHALATES (1)												
Total phthalates (*)		_	ug/kg			23,170		177.7	222.5	163.5	259.6	NT
Bis (2-ethylhexyl) phthalate		varies						160 w/	200 w/	150 w/	240 w/	
	ED 4 0270C	see tests				0.200		MRL 260 /	MRL 330 /	MRL 240 /	MRL 270 /	ЪТ
	EPA 82/0C	column	ug/kg			8,300		MDL 160	MDL 200	MDL 150	MDL 1/0	NI
Butyl benzyl phthalate		varies						1.8 w/	2.3 w/	1.7 w/	1.9 w/	
	EDA 02700	see tests	л			070		MRL 13/	MRL 1//	MRL 127	MRL 14 /	NT
D' 4 1 14 14	EPA 82/0C	·	ug/kg			970		MDL 1.8	MDL 2.3	MDL 1.7	MDL 1.9	NI
Dietnyl phthalate		varies						/.2 W/	9.1 W/	3.0 W/	/.4 W/	
	EDA 8270C	column	ug/kg			1 200		MRL 137	MRL 177	MDL 3.6	MDL 4.0	NT
Dimethyl phthelete	EI A 8270C	Column	ug/kg			1,200		2 2 m/	1 2 m/	2.1 m/	2.4 m/	111
Dimetriyi phthalate		varies						5.5 W/ MPI 13 /	4.2 W/	5.1 W/ MPI 12 /	5.4 W/ MDI 14 /	
	FPA 8270C	column	110/kg			1 400		MDL 3.3	MDI 42	MDI 3.1	MDL 3.4	NT
Di-n-butyl phthalate	LIN 0270C	varies	ug/Kg			1,400		3 3 w/	$\frac{12}{42}$ w/	3.1 w/	$\frac{1702}{17}$ w/	111
DI-II-Outyr philaiaic		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg			5.100		MDL 3.3	MDL 4.2	MDL 3.1	MDL 3.5	NT
Di-n-octyl phthalate		varies				- ,		2.1 w/	2.7 w/	2.0 w/	2.2 w/	· · · ·
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg			6,200		MDL 2.1	MDL 2.7	MDL 2.0	MDL 2.2	NT
POLYCHLORINATED BIPHEN	YLS (PCB)	•										
Total PCBs ⁽⁴⁾			ug/kg	22.7	180	130	3,100	ND	ND	ND	ND	NT
Aroclor 1016		varies					,	ND w/	ND w/	ND w/	ND w/	
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8082	column	ug/kg					MDL 3.1	MDL 3.9	MDL 2.8	MDL 3.2	NT
Aroclor 1221	EPA 8082	varies	ug/kg					ND w/	ND w/	ND w/	ND w/	NT

				0.1	(0 1)	0.11.		٦				
		Method		Sedin	ent Quality	Guidelines (SQGs)	_				
Abbreviations used for SQG's:		Reporting							Sam	ple Testing Re	esults ⁽³⁾	
ERL = "effects range -low";		Limit /										
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection	(2)	-				10-01	10-01	10-01	10-01	11-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	11.3-12.8'	22.8-27.8	37.8-40.8	47.8-52.8'	13-16.2'
		see tests						MRL 26 /	MRL 33 /	MRL 24 /	MRL 27 /	
		column						MDL 3.1	MDL 3.9	MDL 2.8	MDL 3.2	
Aroclor 1232		varies						ND w/	ND w/	ND w/	ND w/	
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8082	column	ug/kg					MDL 3.1	MDL 3.9	MDL 2.8	MDL 3.2	NT
Aroclor 1242		varies						ND w/	ND w/	ND w/	ND w/	
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8082	column	ug/kg					MDL 3.1	MDL 3.9	MDL 2.8	MDL 3.2	NT
Aroclor 1248		varies						ND w/	ND w/	ND w/	ND w/	
		see tests	_					MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8082	column	ug/kg					MDL 3.1	MDL 3.9	MDL 2.8	MDL 3.2	NT
Aroclor 1254		varies						ND w/	ND w/	ND w/	ND w/	
		see tests	_					MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8082	column	ug/kg					MDL 3.1	MDL 3.9	MDL 2.8	MDL 3.2	NT
Aroclor 1260		varies						ND w/	ND w/	ND w/	ND w/	
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8082	column	ug/kg					MDL 3.1	MDL 3.9	MDL 2.8	MDL 3.2	NT
POLYNUCLEAR AROMATICS	HYDROCARBC	DNS (PAH)										
Total PAHs ⁽⁴⁾			ug/kg	4,022	44,792			84.3	154.56	114.46	136.53	NT
2-Methylnaphthalene		varies						13 w/	27 w/	15 w/	23 w/	NT
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg	70	670	670	1,900	MDL 3.8	MDL 4.9	MDL 3.6	MDL 4.0	
Acenaphthene		varies						3.3 w/	4.2 w/	3.1 w/	3.5 w/	NT
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg	16	500	500	2,000	MDL 3.3	MDL 4.2	MDL 3.1	MDL 3.5	
Acenaphthylene		varies						2.1 w/	2.6 w/	1.9 w/	2.2 w/	NT
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg	44	640	560	1,300	MDL 2.1	MDL 2.6	MDL 1.9	MDL 2.2	
Anthracene		varies						3.0 w/	3.8 w/	2.8 w/	3.1 w/	NT
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg	85.3	1,100	960	13,000	MDL 3.0	MDL 3.8	MDL 2.8	MDL 3.1	
Benzo(a)anthracene		varies						2.4 w/	4.1 w/	2.9 w/	2.4 w/	NT
	ED 4 0070 C	see tests	4	2(1	1 (00	1 200	5 100	MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	1
	EPA 8270C	column	ug/kg	261	1,600	1,300	5,100	MDL 1.4	MDL 1.8	MDL 1.3	MDL 1.4	l
Benzo(a)pyrene		varies						1.3 w/	2.9 w/	1.2 w/	1.3 w/	NT
	ED 4 0070 C	see tests	4	120	1 (00	1 (00	2 (00	MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	1
	EPA 8270C	column	ug/kg	430	1,600	1,600	3,600	MDL 1.3	MDL 1.6	MDL 1.2	MDL 1.3	l
Benzo(b)fluoranthene	EPA 8270C	varies	ug/kg			1,600	4,950	4.8 w/	9.0 w/	7.9 w/	6.8 w/	NT

				C . J.		Cuidalinar	(2002-)	1				
		Method		Seam	ent Quanty	Guidelines	SQGS)	-				
Abbreviations used for SQG's:		Reporting							Sam	ple Testing Ro	esults ⁽³⁾	T
ERL = "effects range -low";		Limit /										
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection	II · (2)	~				10-01	10-01	10-01	10-01	11-01
ML = "maximum level"	Method	Limit	Units (-)	(Long et	al., 1999)	(PSDDA	A, 2000)	11.3-12.8	22.8-27.8	37.8-40.8	47.8-52.8	13-10.2
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
		column						MDL 1.2	MDL 1.5	MDL 1.1	MDL 1.3	
Benzo(k)fluoranthene		varies						2.1 w/	2.6 w/	1.9 w/	2.1 w/	NT
	EDA 9270C	see tests				1 (00	4.050	MRL 13 /	MRL I77	MRL 127	MRL 14 /	
	EPA 82/0C	·	ug/kg			1,000	4,950	MDL 2.1	MDL 2.6	MDL 1.9	MDL 2.1	NIT
Benzo(g,h,1)perylene		varies						1.3 W/	1./W/ MDI 17/	4.8 W/	1.4 W/	NI
	EDA 8270C	column	ug/kg			670	3 200	MDL 13	MDL 17	MDL 13	MDL 147	
Chargene	EFA 82/0C	column	ug/kg			070	3,200	11 m/	MDL 1.7	20 m/	22 m/	NT
Chrysene		varies						MPI 13 /	24 W/ MRI 17 /	20 W/	25 W/ MRI 14 /	IN I
	FPA 8270C	column	110/kg	384	2 800	1 400	21 000	MDI 14	MDI 18	MDI 13	MDL 15	
Dibenzo(a h)anthracene	LIN 0270C	varies	ug/ Kg	504	2,000	1,400	21,000	1.3 w/	1.6 w/	1.2 w/	1.3 w/	NT
Dibenzo(a,ii)anun acene		see tests						MRI 13 /	MRI 17 /	MRI 12 /	MRI 14 /	141
	EPA 8270C	column	ug/kg	63.4	260	230	1.900	MDL 1.3	MDL 1.6	MDL 1.2	MDL 1.3	
Fluoranthene		varies	-00				,	3.2 w/	67 w/	5.4 w/	58 w/	NT
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg	600	5,100	1,700	30,000	MDL 3.1	MDL 3.9	MDL 2.9	MDL 3.2	
Fluorene		varies						3.9 w/	3.8 w/	2.8 w/	3.2 w/	NT
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg	19	540	540	3,600	MDL 3.9	MDL 3.8	MDL 2.8	MDL 3.2	
Indeno(1,2,3-cd)pyrene		varies						0.60 w/	0.76 w/	0.56 w/	0.63 w/	NT
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg			600	4,400	MDL 0.60	MDL 0.76	MDL 0.56	MDL 0.63	
Naphthalene		varies						4.1 w/	7.4 w/	4.3 w/	5.9 w/	NT
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg	160	2,100	2,100	2,400	MDL 1.9	MDL 2.4	MDL 1.8	MDL 2.0	
Phenanthrene		varies						22 w/	44 w/	31 w/	43 w/	NT
	ED 4 0270C	see tests	a	240	1 500	1.500	21.000	MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg	240	1,500	1,500	21,000	MDL 2.6	MDL 3.3	MDL 2.4	MDL 2.7	
Pyrene		varies						4.9 w/	8.4 w/	7.7 w/	7.9 w/	NT
	EDA 9270C	see tests		((5	2 (00	2 (00	16,000	MRL 137	MRL 1//	MRL 127	MRL 14/	
DUENOLS	EFA 82/0C	column	ug/kg	003	2,000	2,000	10,000	MDL 3.3	MDL 4.2	MDL 3.1	MDL 3.4	
T (1 DL 1 (4)						1600		70.2	101.2	72.4	02.1	NT
1 otal Phenois (7)			ug/kg			1582	5///	/9.2	101.3	/3.4	83.1	NT
2,4-Dimethylphenol		varies						20 w/	25 w/	18 w/	20 w/	
	EDA 8270C	see tests	ng/kg			20	210	MRL 64 /	MRL 81 / MDI 25	MRL 59 /	MRL 66 /	NT
	EPA 8270C	. column	ug/kg			29	210		MDL 25			IN I
2-Methylphenol	EPA 82/0C	varies	ug/kg			63	//	3.1 W/	3.9 W/	2.8 W/	3.2 W/	NI

	a seaments.			C a dia		Cuidalinar	(000-)	7				
		Method		Sedin	lent Quanty	Guidelines	SQGS)	-				
Abbreviations used for SQG's:		Reporting							Sam	ple Testing Re	esults (3)	1
ERL = "effects range -low";		Limit /										
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical Method ⁽¹⁾	L imit ^(1a)	Limita (2)	a	1 1000	(DCDD)	2000)	10-01	10-01	10-01	10-01	11-01
ML – maximum level	Method		Units	(Long et	al., 1999)	(PSDDA	A, 2000)	11.3-12.8	22.0-27.0	37.8-40.8	47.8-32.8	13-10.2
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	1
		column						MDL 3.1	MDL 3.9	MDL 2.8	MDL 3.2	
4-Methylphenol		varies						3.0 w/	3.8 w/	2.8 W/	3.1 w/	l
	EDA 8270C	see tests	ua/lea			670	2 600	MRL 137	MRL 1//	MRL 127	MRL 14 /	NT
D (11 1 1	EPA 82/0C	·	ug/kg			670	3,000	MDL 3.0	MDL 3.8	MDL 2.8	MDL 3.1	NI
Pentachiorophenoi		varies						2.9 W/	3./W/	2./W/ MDI 120/	3.0 W/	l
	EDA 8270C	column	ug/kg			400	600	MDL 2.0	MDI 3.7	MDI 27	MDI 3.0	NT
2 Chlorophonol	LI A 82/0C	varios	ug/kg			400	090	2 2 w/	1 2 m/	$\frac{1}{2} \frac{1}{2} \frac{w}{2}$	2.5 w/	111
2-Chlorophenor		valles						3.3 W/ MRI 13 /	4.2 W/ MRI 17 /	MRI 12 /	3.5 W/ MRI 14 /	1
	EPA 8270C	column	110/ko					MDL 3 3	MDL 4 2	MDL 3.1	MDL 3.5	NT
4-Chloro-3-methylphenol	211102700	varies	ug/ng					3.5 w/	15 w/	3 3 w/	3.7 w/	
4-Cilloro-5-methylphenor		see tests						MRL 63 /	MRL 81 /	MRL 59 /	MRL 66 /	l
	EPA 8270C	column	ug/kg					MDL 3.5	MDL 4.5	MDL 3.3	MDL 3.7	NT
2 4-Dichlorophenol		varies						3.6 w/	4 5 w/	3 3 w/	3.7 w/	
2,1 Diemorophenor		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	l
	EPA 8270C	column	ug/kg					MDL 3.6	MDL 4.5	MDL 3.3	MDL 3.7	NT
2-Nitrophenol		varies	00					3.2 w/	4.1 w/	3.0 w/	3.3 w/	[
- · · · · · · · · · · · · · · · · · · ·		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	1
	EPA 8270C	column	ug/kg					MDL 3.2	MDL 4.1	MDL 3.0	MDL 3.3	NT
4-Nitrophenol		varies						2.9 w/	3.7 w/	2.7 w/	3.1 w/	
1		see tests						MRL 130 /	MRL 170 /	MRL 120 /	MRL 140 /	1
	EPA 8270C	column	ug/kg					MDL 2.9	MDL 3.7	MDL 2.7	MDL 3.1	NT
2,4-Dinitrophenol		varies						17 w/	22 w/	16 w/	18 w/	
_		see tests						MRL 260 /	MRL 330 /	MRL 240 /	MRL 270 /	1
	EPA 8270C	column	ug/kg					MDL 17	MDL 22	MDL 16	MDL 18	NT
2-Methyl-4,6-dinitrophenol		varies						3.9 w/	5.0 w/	3.7 w/	4.1 w/	1
		see tests						MRL 130 /	MRL 170 /	MRL 120 /	MRL 140 /	1
	EPA 8270C	column	ug/kg					MDL 3.9	MDL 5.0	MDL 3.7	MDL 4.1	NT
2,4,5-Trichlorophenol		varies						4.6 w/	5.9 w/	4.3 w/	4.9 w/	l
		see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg					MDL 4.6	MDL 5.9	MDL 4.3	MDL 4.9	NT
2,4,6-Trichlorophenol		varies						4.7 w/	6.0 w/	4.4 w/	4.9 w/	i
	ED 4 0050 2	see tests						MRL 13 /	MRL 17 /	MRL 12 /	MRL 14 /	
	EPA 8270C	column	ug/kg					MDL 4.6	MDL 6.0	MDL 4.4	MDL 4.9	NT
Phenol		varies						3.5 w/	4.5 w/	3.3 w/	4.6 w/	i
	ED4 02700	see tests	/1					MRL 38 /	MRL 49 /	MRL 36 /	MRL 40 /	NT
1 1	EPA 8270C	column	ug/kg					MDL 3.5	MDL 4.5	MDL 3.3	MDL 3.7	NT

Sixth set of five samples-- holes 11B-01, 12-01, 13-01, and upper part of 14-01:

				Sedim	ent Quality	Guidelines ((SQGs)					
Although the second for SOCI-		Method							Sam	nle Testing R	culte ⁽³⁾	
ERI = "effects range -low":		L imit /							Jain	pie resting ite	Suits	
FRM = "effects range - medium":		Method		EDI	EDM	CT.	м	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection		EKL	EKM	SL	ML	11B-01	11B-01	12-01	13-01	14-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDD/	A. 2000)	23-24.5'	33-33.5'	23-24'	26.5-27.7'	13.5-18'
PHYSICAL/CONVENTIONALS				(2018 0)	,	(1 2 2 2 1	-,)			1		
Total Solids (wet weight)	EPA 160.3M	0.01	%					83.0	84.5	78.4	74.6	83.7
Total Volatile Solids (wet weight)	SM 2540G	0.01	%					2.13	2.04	1.66	2.31	2.12
pH	EPA 9045	0.1	pH units					7.8	8.1	7.8	7.7	8.1
Ammonia	EPA 350.1M	0.2 / 0.2	mg/kg					3.6	5.2	25.8	6.1	0.5
Total Organic Carbon	EPA 9060M	500/ 300	mg/kg					4300	4700	5400	8700	5700
Soluble Sulfides	EPA/CE-81-1	0.1	mg/kg					171	12	515	35	10
Total Sulfides	EPA 9030B	3	mg/kg					21	2	15	4	2
Calcium carbonate	ASTM D-4373	0.1	%					0.20	0.10	0.20	0.20	0.20
Oil and Grease	EPA 413.2	10	mg/kg					19	21	20	13	17
Total Recoverable Petroleum	EPA 413.1	10	mg/kg					17	19	20	13	17
Hydrocarbons												
METALS												
Antimony (Sb)		varies						0.11 w/	0.14 w/	0.13 w/	0.10 w/	0.18 w/
		see test						MRL 0.05 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /
	EPA 6020	column	mg/kg			15	200	MDL 0.03	MDL 0.04	MDL 0.04	MDL 0.04	MDL 0.04
Arsenic (As)		varies						5.4 w/	3.8 w/	7.5 w/	5.4 w/	4.5 w/
		see test		. .	=0		-	MRL 0.5 /	MRL 0.6 /	MRL 0.6 /	MRL 0.6 /	MRL 0.6 /
	EPA 6020	column	mg/kg	8.2	70	57	700	MDL 0.2	MDL 0. 2	MDL 0.2	MDL 0.2	MDL 0.2
Cadmium (Cd)		varies						0.20 w/	0.16 w/	0.20 w/	0.24 w/	0.34 w/
	EDA (020	see test		1.2	0.6	5 1	14	MRL 0.05 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /
	EPA 6020	·	mg/kg	1.2	9.0	5.1	14	MDL 0.03	MDL 0.04	MDL 0.04	MDL 0.03	MDL 0.04
Chromium (Cr)		varies						1/.6 W/	21.1 W/	19./ W/	18.1 W/	21.6 W/
	EPA 6020	column	ma/ka	81	370			MDL 0.04	MDL 0.05	MDL 0.05	MDL 0.04	MDL 0.05
Coppor (Cu)	EI A 0020	varias	iiig/ kg	01	570			21.7 w/	25.2 m/	22.2 m/	22 4 w/	25.1 w/
Copper (Cu)		varies						21.7 W/	MPL 0.12 /	MPL 0.12 /	23.4 W/	23.1 W/ MRI 0.12 /
	EPA 6020	column	mø/kø	34	270	390	1 300	MDL 0.05	MDL 0.06	MDL 0.06	MDL 0.06	MDL 0.06
Lead (Pb)	LITTOOLO	varies		5.	210	570	1,500	11.3 w/	12.6 w/	12.0 w/	12.0 w/	12.5 w/
		see test						MRL 0.05 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /
	EPA 6020	column	mg/kg	46.7	218	450	1,200	MDL 0.04	MDL 0.05	MDL 0.05	MDL 0.04	MDL 0.05
Mercury (Hg)		varies						0.039 w/	0.042 w/	0.048 w/	0.066 w/	0.055 w/
		see test						MRL 0.017 /	MRL 0.020 /	MRL 0.019 /	MRL 0.019 /	MRL 0.019 /
	EPA 7471A	column	mg/kg	0.15	0.71	0.41	2.3	MDL 0.009	MDL 0.010	MDL 0.009	MDL 0.009	MDL 0.009

		N 4 1		Sedim	nent Quality	Guidelines ((SQGs)					
Abbreviations used for SOG's:		Reporting							Sam	ple Testing Re	esults (3)	
ERL = "effects range -low";		Limit /							~	F		
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection		LILL	Liui	512		11B-01	11B-01	12-01	13-01	14-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	23-24.5'	33-33.5'	23-24'	26.5-27.7'	13.5-18'
Nickel (Ni)		varies						17.2 w/	22.5 w/	21.6 w/	18.5 w/	22.1 w/
		see test						MRL 0.3 /	MRL 0.4 /	MRL 0.4 /	MRL 0.3 /	MRL 0.4 /
	EPA 6020	column	mg/kg	20.9	51.6	140	370	MDL 0.3	MDL 0.4	MDL 0.4	MDL 0.3	MDL 0.4
Selenium (Se)		varies						0.2 w/	0.1 w/	0.2 w/	0.3 w/	1.0 w/
	EDA 7742	see test	malta					MRL 0.2 /	MRL 0.2 /	MRL 0.27	MRL 0.2 /	MRL 0.2 /
Silver (A g)	EPA //42	colulin	mg/kg					MDL 0.1		MDL 0.1	MDL 0.1	MDL 0.1
Sliver (Ag)		varies						0.03 W/	0.08 W/ MRI 0.02 /	MRI 0.02 /	MRL 0.02 /	0.07 W/ MRI 0.02 /
	EPA 6020	column	mø/kø	1	37	61	84	MDL 0.027	MDL 0.027	MDL 0.027	MDL 0.027	MDL 0.027
Zinc (Zn)	2111 0020	varies	ing kg		5.1	0.1	0.1	60.7 w/	77.0 w/	72.0 w/	62.7 w/	75.2 w/
		see test						MRL 0.5 /	MRL 0.6 /	MRL 0.6 /	MRL 0.6 /	MRL 0.6 /
	EPA 6020	column	mg/kg	150	410	410	3,800	MDL 0.3	MDL 0.4	MDL 0.4	MDL 0.3	MDL 0. 4
ORGANICS												
PESTICIDES												
Total Chlorinated Pesticides (4)			ug/kg	6.8	108.1	56.9	69.0	0.25	ND	0.53	ND	ND
Aldrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /
	EPA 8081A	column	ug/kg			10		MDL 0.30	MDL 0.28	MDL 0.28	MDL 0.31	MDL 0.28
alpha BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 0.14	MDL 0.12	MDL 0.13	MDL 0.14	MDL 0.12
alpha-Chlordane		varies						0.25 w/	ND w/	ND w/	ND w/	ND w/
	EDA 9091A	see tests	ua/lea			10		MRL 1.3 /	MRL 1.2 /	MRL 1.2/	MRL 1.4 /	MRL 1.2 /
h -t- DUC	EPA 0001A	colulin	ug/kg			10		MDL 0.14	MDL 0.13	MDL 0.17	NDL 0.51	MDL 0.13
beta-BHC		varies						ND W/	ND W/	ND W/	NDW/ MDL14/	ND W/ MBL 1.2 /
	EPA 8081A	column	110/ko					MDL 0.19	MDL 0.18	MDL 0.18	MDL 0.20	MDL 0.18
delta-BHC	Liniooonii	varies	ug/ng					ND w/	ND w/	ND w/	ND w/	ND w/
dena brie		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 0.48	MDL 0.44	MDL 0.45	MDL 0.49	MDL 0.44
Dieldrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.7 /	MRL 1.2 /
	EPA 8081A	column	ug/kg	0.02	8.0	10		MDL 0.40	MDL 0.77	MDL 0.37	MDL 1.7	MDL 0.66
Endosulfan I		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 0.56	MDL 0.15	MDL 0.18	MDL 0.74	MDL 0.33
Endosulfan II		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EPA 8081A	see tests	ug/kg					MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /

				Sedin	nent Quality	Guidelines ((SQGs)					
Abbreviations used for SOG's:		Reporting							Sam	ple Testing Re	esults (3)	
ERL = "effects range -low":		Limit /							~			1
ERM = "effects range - medium";		Method		FRI	FRM	SI	MI	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection		LILL	LICIVI	5L	IVIL	11B-01	11B-01	12-01	13-01	14-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	23-24.5'	33-33.5'	23-24'	26.5-27.7'	13.5-18'
	1	column	l				, ,	MDL 0.96	MDL 0.26	MDL 0.27	MDL 0.29	MDL 0.26
Endosulfan Sulfate		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 0.21	MDL 0.19	MDL 0.32	MDL 1.4	MDL 0.19
Endrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 0.17	MDL 0.16	MDL 1.2	MDL 0.18	MDL 0.16
gamma-BHC Lindane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 5.2 /	MRL 1.2 /
	EPA 8081A	column	ug/kg			10		MDL 0.32	MDL 1.2	MDL 0.77	MDL 5.2	MDL 1.2
gamma-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.8 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 0.19	MDL 0.75	MDL 0.18	MDL 1.8	MDL 0.85
Heptachlor		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /
	EPA 8081A	column	ug/kg			10		MDL 0.18	MDL 0.16	MDL 0.17	MDL 0.82	MDL 0.16
Toxaphene		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests	a					MRL 64 /	MRL 59 /	MRL 60 /	MRL 66 /	MRL 59 /
(5)	EPA 8081A	column	ug/kg					MDL 7.2	MDL 6.6	MDL 6.8	MDL 47	MDL 6.6
Total DDT ⁽³⁾		varies										
		see tests		1.50	46.1	6.0	(0.0			0.52		
	EPA 8081A	column	ug/kg	1.58	46.1	6.9	69.0	ND	ND	0.53	ND	ND
4,4'-DDD		varies						ND W/	ND w/	ND w/	ND w/	ND w/
		see tests	wa/ka	1.0	7.0			MRL 1.4 /	MRL 1.27	MRL 1.27	MRL 3.5 /	MRL 1.2 /
	EPA 8081A	·	ug/kg	1.0	7.0			MDL 1.4	MDL 0.18	MDL 0.22	MDL 3.3	MDL 0.18
4,4°-DDE		varies						ND W/	ND W/	0.53 W/	ND W/	ND W/
	EDA 8081A	column	ug/kg	2.2	27			MDL 0.54	MDI 13	MDL 0.30	MDL 0.33	MDL 0.20
4 4' DDT	LIA 0001A	varias	ug/kg	2.2	21			ND w/	MDL 1.5	MDL 0.50	NDL 0.33	ND w/
4,4 -DD1		varies						MDI 12/	MDL 1.2 /	MDL 1.2 /	MDL 1.4 /	MDL 12/
	FPA 8081A	column	110/kg	2.0	20			MDL 0.22	MDL 0.80	MDL 0.21	MDL 0.23	MDL 0.20
Hentachlor Enovide	LINGOUN	varias	ug/Kg	2.0	20			ND w/	ND w/	ND w/	ND w/	ND w/
пераешої Ерохіас		see tests						MRI 13/	MRI 12/	MRI 12/	MRI 14/	MRI 12/
	EPA 8081A	column	ug/kg					MDL 0.18	MDL 0.16	MDL 0.17	MDL 0.18	MDL 0.54
Endrin Aldehyde	2	varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see tests						MRL 13/	MRL 1 2 /	MRL 1 2 /	MRL 14/	MRL 1 2 /
	EPA 8081A	column	ug/kg					MDL 0.46	MDL 0.42	MDL 0.43	MDL 0.90	MDL 0.42
Endrin Ketone	EPA 8081A	varies	ug/kg		1			ND w/	ND w/	ND w/	ND w/	ND w/
					1							

				Sedin	nent Quality	Guidelines	(SQGs)					
Abbreviations used for SOG's:		Reporting							Sam	ple Testing Re	esults (3)	
ERL = "effects range -low":		Limit /										1
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection		LICE	Eltim	5E	ML	11B-01	11B-01	12-01	13-01	14-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDD/	A, 2000)	23-24.5'	33-33.5'	23-24'	26.5-27.7'	13.5-18'
		see tests						MRL 2.2 /	MRL 1.2 /	MRL 1.2 /	MRL 3.1 /	MRL 1.2 /
		column						MDL 2.2	MDL 1.2	MDL 0.65	MDL 3.1	MDL 0.19
Methoxychlor		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	ED4 00014	see tests						MRL 1.3 /	MRL 1.2 /	MRL 1.2 /	MRL 1.4 /	MRL 1.2 /
	EPA 8081A	column	ug/kg					MDL 0.21	MDL 1.2	MDL 0.46	MDL 1.4	MDL 0.19
								١T	١T	NT) IT	ЪT
Total Organotins (*)	77	,	ug/kg					NI	NI	NI	NI	NI
Monobutyltin (n-Butyltin)	Krone	n/a	ug/kg					NT	NT	NT	NT	NT
Di-n-butyltin	Krone	n/a	ug/kg					NT	NT	NT	NT	NT
1'ri-n-butyltin	Krone	n/a	ug/kg			(7)		NT	NT	NT	NT	NT
Tetra-n-butyltin	Krone	n/a	ug/kg			0.15 (7)		NT	NT	NT	NT	NT
PHTHALATES												
Total phthalates (4)			ug/kg			23,170		NT	NT	NT	NT	NT
Bis (2-ethylhexyl) phthalate	EPA 8270C	n/a	ug/kg			8,300		NT	NT	NT	NT	NT
Butyl benzyl phthalate	EPA 8270C	n/a	ug/kg			970		NT	NT	NT	NT	NT
Diethyl phthalate	EPA 8270C	n/a	ug/kg			1,200		NT	NT	NT	NT	NT
Dimethyl phthalate	EPA 8270C	n/a	ug/kg			1,400		NT	NT	NT	NT	NT
Di-n-butyl phthalate	EPA 8270C	n/a	ug/kg			5,100		NT	NT	NT	NT	NT
Di-n-octyl phthalate	EPA 8270C	n/a	ug/kg			6,200		NT	NT	NT	NT	NT
POLYCHLORINATED BIPHE	ENYLS (PCB)		•									
Total PCBs ⁽⁴⁾			ug/kg	22.7	180	130	3,100	NT	NT	NT	NT	NT
Aroclor 1016	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1221	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1232	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1242	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1248	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1254	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1260	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
POLYNUCLEAR AROMATIC	S HYDROCARB	ONS (PAH)										
Total PAHs ⁽⁴⁾			ug/kg	4,022	44,792			NT	NT	NT	NT	NT
2-Methylnaphthalene	EPA 8270C	n/a	ug/kg	70	670	670	1,900	NT	NT	NT	NT	NT
Acenaphthene	EPA 8270C	n/a	ug/kg	16	500	500	2,000	NT	NT	NT	NT	NT
Acenaphthylene	EPA 8270C	n/a	ug/kg	44	640	560	1,300	NT	NT	NT	NT	NT
Anthracene	EPA 8270C	n/a	ug/kg	85.3	1,100	960	13,000	NT	NT	NT	NT	NT
Benzo(a)anthracene	EPA 8270C	n/a	ug/kg	261	1,600	1,300	5,100	NT	NT	NT	NT	NT

				Sedim	ent Quality	Guidelines ((SQGs)	_				
Abbreviations used for SOG's:		Reporting							Sam	ole Testing Ro	esults (3)	
ERL = "effects range -low";		Limit /							· · · · ·	0		
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection						11B-01	11B-01	12-01	13-01	14-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units ⁽²⁾	(Long et	al., 1999)	(PSDDA	A, 2000)	23-24.5'	33-33.5'	23-24'	26.5-27.7'	13.5-18'
Benzo(a,e)pyrene	EPA 8270C	n/a	ug/kg	430	1,600	1,600	3,600	NT	NT	NT	NT	NT
Benzo(b)fluoranthene	EPA 8270C	n/a	ug/kg			1,600	4,950	NT	NT	NT	NT	NT
Benzo(k)fluoranthene	EPA 8270C	n/a	ug/kg			1,600	4,950	NT	NT	NT	NT	NT
Benzo(g,h,i)perylene	EPA 8270C	n/a	ug/kg			670	3,200	NT	NT	NT	NT	NT
Chrysene	EPA 8270C	n/a	ug/kg	384	2,800	1,400	21,000	NT	NT	NT	NT	NT
Dibenzo(a,h)anthracene	EPA 8270C	n/a	ug/kg	63.4	260	230	1,900	NT	NT	NT	NT	NT
Fluoranthene	EPA 8270C	n/a	ug/kg	600	5,100	1,700	30,000	NT	NT	NT	NT	NT
Fluorene	EPA 8270C	n/a	ug/kg	19	540	540	3,600	NT	NT	NT	NT	NT
Indeno(1,2,3-cd)pyrene	EPA 8270C	n/a	ug/kg			600	4,400	NT	NT	NT	NT	NT
Naphthalene	EPA 8270C	n/a	ug/kg	160	2,100	2,100	2,400	NT	NT	NT	NT	NT
Phenanthrene	EPA 8270C	n/a	ug/kg	240	1,500	1,500	21,000	NT	NT	NT	NT	NT
Pyrene	EPA 8270C	n/a	ug/kg	665	2,600	2,600	16,000	NT	NT	NT	NT	NT
PHENOLS												
Total Phenols ⁽⁴⁾			ug/kg			1582	5777	NT	NT	NT	NT	NT
2,4-Dimethylphenol	EPA 8270C	n/a	ug/kg			29	210	NT	NT	NT	NT	NT
2-Methylphenol	EPA 8270C	n/a	ug/kg			63	77	NT	NT	NT	NT	NT
4-Methylphenol	EPA 8270C	n/a	ug/kg			670	3,600	NT	NT	NT	NT	NT
Pentachlorophenol	EPA 8270C	n/a	ug/kg			400	690	NT	NT	NT	NT	NT

Seventh set of five samples-- lower part of hole14-01, and upper part of hole 15-01:

					Sedim	ent Quality	Guidelines ((SQGs)					
А	bbreviations used for SQG's:		Reporting							Sam	ple Testing Re	esults (3)	
E E	RL = "effects range -low"; RM = "effects range - medium";		Limit / Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SI M	L = "screening level" IL = "maximum level"	Analytical Method ⁽¹⁾	Detection Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	14-01 18-21.5'	15-01 12-18'	15-01 18-28'	15-01 28-38'	15-01 38-48'
PH	YSICAL/CONVENTIONALS												
	Total Solids (wet weight)	EPA 160.3M	0.01	%					81.3	67.3	59.7	65.8	69.5
	Total Volatile Solids (wet weight)	SM 2540G	0.01	%					1.98	4.25	6.75	6.73	3.81
	pH	EPA 9045	0.1	pH units					8.0	7.0	7.6	7.1	7.1

				Sedim	ent Quality	Guidelines	(SQGs)					
Abbreviations used for SOG's:		Reporting							Sam	ple Testing Re	esults (3)	
ERL = "effects range -low";		Limit /					ĺ					
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection		LILL	Ertin	52		14-01	15-01	15-01	15-01	15-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	18-21.5'	12-18'	18-28'	28-38'	38-48'
Ammonia		varies						0.2 w/	49.9 w/	118 w/	146 w/	60.1 w/
		see tests						MRL 0.02 /	MRL 0.2 /	MRL 0.4 /	MRL 0.4 /	MRL 0.2 /
	EPA 350.1M	column	mg/kg					MDL 0.02	MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.2
Total Organic Carbon	EPA 9060M	500/300	mg/kg					5000	12600	17700	22300	8500
Soluble Sulfides	EPA/CE-81-1	0.1	mg/kg					2	317	275	120	198
Total Sulfides	EPA 9030B	3	mg/kg					2	91	91	36	46
Calcium carbonate	ASTM D-4373	0.1	%					0.10	0.20	0.20	0.52	0.20
Oil and Grease	EPA 413.2	10	mg/kg					39	36	19	18	33
Total Recoverable Petroleum	EPA 413.1	10	mg/kg					27	30	16	18	33
Hydrocarbons												
METALS												
Antimony (Sb)		varies						0.14 w/	0.13 w/	0.17 w/	0.19 w/	0.11 w/
	ED 4 (020	see test	a			1.5	200	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /
	EPA 6020	column	mg/kg			15	200	MDL 0.04	MDL 0.03	MDL 0.03	MDL 0.03	MDL 0.03
Arsenic (As)		varies						4.6 W/	5.8 W/	6.58 W/	6.49 W/	6.8 W/
	EDA 6020	column	ma/ka	82	70	57	700	MDL 0.2	MDL 0.2	MRL 0.367	MDL 0.06	MDL 0.2
Cadmium (Cd)	EI A 0020	varias	iiig/ kg	0.2	70	51	700	0.23 w/	1000000000000000000000000000000000000	0.32 w/	0.33 w/	0.27 w/
Caulinain (Cu)		see test						MRL 0.06 /	MRL 0.06 /	MRL 0.02 /	MRL 0.02 /	MRL 0.06 /
	EPA 6020	column	mg/kg	1.2	9.6	5.1	14	MDL 0.04	MDL 0.03	MDL 0.01	MDL 0.01	MDL 0.03
Chromium (Cr)		varies	00					24.3 w/	20.5 w/	28.0 w/	28.5 w/	26.6 w/
		see test						MRL 0.24 /	MRL 0.22 /	MRL 0.2 /	MRL 0.2 /	MRL 0.23 /
	EPA 6020	column	mg/kg	81	370			MDL 0.05	MDL 0.04	MDL 0.1	MDL 0.1	MDL 0.04
Copper (Cu)		varies						26.9 w/	25.5 w/	29.5 w/	29.3 w/	29.0 w/
		see test						MRL 0.12 /	MRL 0.11 /	MRL 0.2 /	MRL 0.2 /	MRL 0.11 /
	EPA 6020	column	mg/kg	34	270	390	1,300	MDL 0.06	MDL 0.06	MDL 0.1	MDL 0.1	MDL 0.06
Lead (Pb)		varies						12.1 w/	13.4 w/	21.5 w/	23.0 w/	16.0 w/
	EDA 6020	see test	malka	167	219	450	1 200	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /	MRL 0.06 /
Moreury (IIa)	EFA 0020	Column	iiig/kg	40.7	210	430	1,200	MDL 0.03	0.116 m/	MDL 0.04	0.08 w/	MDL 0.04
Mercury (Hg)		varies						0.056 W/	0.110 W/	0.07 W/	0.08 W/ MRI 0.01 /	0.057 W/ MRL 0.013 /
	EPA 7471A	column	mø/kø	0.15	0.71	0.41	23	MDL 0.010	MDL 0.008	MDL 0.00	MDL 0.01	MDL 0.006
Nickel (Ni)		varies		0.10	0.71	0.11	2.5	22.3 w/	20.9 w/	22.2 w/	22.6 w/	23.7 w/
		see test						MRL 0.4 /	MRL 0.6 /	MRL 0.2 /	MRL 0.2 /	MRL 0.6 /
	EPA 6020	column	mg/kg	20.9	51.6	140	370	MDL 0.4	MDL 0.3	MDL 0.2	MDL 0.2	MDL 0.3
Selenium (Se)		varies						0.5 w/	0.58 w/	0.73 w/	0.80 w/	0.48 w/
	EPA 7742	see test	mg/kg					MRL 0.2 /	MRL 0.22 /	MRL 0.11 /	MRL 0.11 /	MRL 0.23 /

				Sadim	ont Quality	Guidalinas	(SOCa)	7				
		Method		Seum		Guidennes	SQUS)	-			(2)	
Abbreviations used for SQG's:		Reporting							Sam	ple Testing Re	esults (3)	1
ERL = "effects range -low";		Limit /						MDU	MDH	MDH	MOU	MDH
ERM = "effects range - medium";	Applytical	Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Method ⁽¹⁾	Limit ^(1a)	Unite (2)	(T +	-1 1000)		2000)	14-01 18-21 5'	13-01	15-01	15-01 28-38'	15-01 38-48'
	Wiethou	lum	Onits	(Long et	al., 1999)	(PSDDF	4,2000)	10 21.5	MDL 0.02	10 20	20-50	MDL 0.02
Silver (A =)		column						MDL 0.1	MDL 0.03	MDL 0.04	MDL 0.03	0.10 m/
Silver (Ag)		varies						0.07 W/	0.10 W/	0.11 W/	0.13 W/	0.10 W/ MRI 0.02 /
	FPA 6020	column	ma/ka	1	37	61	84	MDL 0.01	MDI 0.01	MDL 0.01	MDI 0.01	MDL 0.01
Zinc (Zn)	L171 0020	varies	IIIg/ Kg	1	5.7	0.1	0.4	74.4 w/	67.7 w/	79.4 w/	82.1 w/	77.5 w/
		see test						MRL 0.6 /	MRL 0.6 /	MRL 0.6 /	MRL 0.6 /	MRL 0.6 /
	EPA 6020	column	mg/kg	150	410	410	3,800	MDL 0.4	MDL 0.3	MDL 0.2	MDL 0.2	MDL 0.3
ORGANICS												
PESTICIDES												
Total Chlorinated Pesticides ⁽⁴⁾			ug/kg	6.8	108.1	56.9	69.0	ND	ND	ND	5.4	ND
Aldrin		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg			10		MDL 0.28	MDL 3.6	MDL 3.7	MDL 3.7	MDL 3.2
alpha BHC		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 0.13	MDL 1.6	MDL 3.7	MDL 3.8	MDL 1.4
alpha-Chlordane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test				10		MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg			10		MDL 0.13	MDL I./	MDL I./	MDL I./	MDL 1.5
beta-BHC		varies						ND W/	ND w/	ND w/	ND w/	ND W/
	EPA 8081A	columns	ug/kg					MDL 0.18	MDL 2.3	MDI 23	MDL 24	MDL 147
delta BHC	LIA 0001A	varies	ug/Kg					ND w/	ND w/	NDL 2.5	ND w/	ND w/
dena-BIIC		see test						MRL 12/	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 0.45	MDL 5.7	MDL 5.8	MDL 5.9	MDL 5.0
Dieldrin		varies	00					ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg	0.02	8.0	10		MDL 0.58	MDL 4.8	MDL 4.8	MDL 4.9	MDL 4.2
Endosulfan I		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 0.15	MDL 1.9	MDL 2.0	MDL 2.0	MDL 1.7
Endosulfan II		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 0.27	MDL 3.4	MDL 3.4	MDL 3.5	MDL 3.0
Endosulfan Sulfate		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EDA 0001A	see test	ug/lra					MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16/	MRL 14 /
En dain	EPA 8081A	columns	ug/kg					MDL 0.20	MDL 2.5	MDL 2.5	MDL 2.6	MDL 2.2
Enarin	EPA 8081A	varies	ug/kg					ND W/	ND W/	ND W/	ND W/	ND W/

				Sedin	nent Quality	Guidelines	(SQGs)					
Abbreviations used for SOG's:		Reporting							Sam	ple Testing Re	esults (3)	
ERL = "effects range -low";		Limit /					ĺ					
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection				~		14-01	15-01	15-01	15-01	15-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	18-21.5'	12-18'	18-28'	28-38'	38-48'
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
		columns						MDL 0.16	MDL 2.1	MDL 2.1	MDL 2.1	MDL 1.8
gamma-BHC Lindane		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	ED 4 0001 4	see test				10		MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg			10		MDL 0.66	MDL 16	MDL 3.8	MDL 4.2	MDL 3.3
gamma-Chlordane		varies						ND W/	ND W/	ND W/	ND w/	ND W/
	EPA 8081A	columns	ug/kg					MDL 0.78	MDL 2.3	MDL 2.3	MDL 24	MRL 147 MDI 20
Hentachlor	LIA 000IA	varies	ug/Kg					ND w/	ND w/	ND w/	ND w/	NDL 2.0
rieptaemor		see test						MRL 12/	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg			10		MDL 0.17	MDL 2.1	MDL 2.2	MDL 2.2	MDL 1.9
Toxaphene		varies						ND w/	ND w/	ND w/	ND w/	ND w/
I		see test						MRL 60 /	MRL 770 /	MRL 780 /	MRL 790 /	MRL 670 /
	EPA 8081A	columns	ug/kg					MDL 6.8	MDL 87	MDL 88	MDL 89	MDL 76
Total DDT ⁽⁵⁾		varies										
		see test										
	EPA 8081A	columns	ug/kg	1.58	46.1	6.9	69.0	ND	ND	ND	5.4	ND
4,4'-DDD		varies						ND w/	ND w/	ND w/	ND w/	ND w/
	EDA 2021A	see test	na/ka	1.0	7.0			MRL 1.27	MRL 167 MDL 24	MRL 167	MRL 16 /	MRL 14 / MDL 2.1
4.4' DDE	LFA 0001A	continuits	ug/kg	1.0	7.0			MDL 0.19	NDL 2.4	MDL 2.4	MDL 2.4	NDL 2.1
4,4 -DDE		see test						MRI 12/	MRL 16 /	MRL 16 /	MRI 16 /	MRI 14 /
	EPA 8081A	columns	ug/kg	2.2	27			MDL 0.30	MDL 3.8	MDL 3.9	MDL 3.9	MDL 3/4
4.4'-DDT		varies	-00					ND w/	ND w/	ND w/	5.4 w/	ND w/
,		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg	2.0	20			MDL 0.21	MDL 2.7	MDL 2.7	MDL 2.7	MDL 2.3
Heptachlor Epoxide		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 0.36	MDL 2.1	MDL 2.2	MDL 2.2	MDL 1.9
Endrin Aldehyde		varies						ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16/	MRL 14 /
Endrin Katana	EPA 8081A	columns	ug/kg					NDL 0.43	NDL 5.5	MDL 5.5	MDL 5.6	MDL 4.8
Englin Ketone		varies						MRI 12/	MRI 16 /	MRI 16/	MRI 16/	MRI 14 /
	EPA 8081A	columns	uø/kø					MDL 0.19	MDL 4.8	MDL 2.5	MDL 5.5	MDL 4 7
Methoxychlor	Liniocom	varies	"B' "B					ND w/	ND w/	ND w/	ND w/	ND w/
		see test						MRL 1.2 /	MRL 16 /	MRL 16 /	MRL 16 /	MRL 14 /
	EPA 8081A	columns	ug/kg					MDL 0.20	MDL 2.5	MDL 2.6	MDL 2.6	MDL 4.7

				Sedin	nent Quality	Guidelines ((SQGs)					
Abbreviations used for SOG's:		Reporting							Sam	ple Testing R	esults (3)	
ERL = "effects range -low":		Limit /					Ì		~			
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection		LILL	Liui	52		14-01	15-01	15-01	15-01	15-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	18-21.5'	12-18'	18-28'	28-38'	38-48'
ORGANOTINS												
Total Organotins (4)			ug/kg					NT	NT	NT	NT	NT
Monobutyltin (n-Butyltin)	Krone	n/a	ug/kg					NT	NT	NT	NT	NT
Di-n-butyltin	Krone	n/a	ug/kg					NT	NT	NT	NT	NT
Tri-n-butyltin	Krone	n/a	ug/kg					NT	NT	NT	NT	NT
Tetra-n-butyltin	Krone	n/a	ug/kg			0.15 (7)		NT	NT	NT	NT	NT
PHTHALATES												
Total phthalates (4)			ug/kg			23,170		NT	NT	NT	NT	NT
Bis (2-ethylhexyl) phthalate	EPA 8270C	n/a	ug/kg			8,300		NT	NT	NT	NT	NT
Butyl benzyl phthalate	EPA 8270C	n/a	ug/kg			970		NT	NT	NT	NT	NT
Diethyl phthalate	EPA 8270C	n/a	ug/kg			1,200		NT	NT	NT	NT	NT
Dimethyl phthalate	EPA 8270C	n/a	ug/kg			1,400		NT	NT	NT	NT	NT
Di-n-butyl phthalate	EPA 8270C	n/a	ug/kg			5,100		NT	NT	NT	NT	NT
Di-n-octyl phthalate	EPA 8270C	n/a	ug/kg			6,200		NT	NT	NT	NT	NT
POLYCHLORINATED BIPHEN	YLS (PCB)											
Total PCBs ⁽⁴⁾			ug/kg	22.7	180	130	3,100	NT	NT	NT	NT	NT
Aroclor 1016	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1221	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1232	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1242	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1248	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1254	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
Aroclor 1260	EPA 8082	n/a	ug/kg					NT	NT	NT	NT	NT
POLYNUCLEAR AROMATICS	HYDROCARBO	DNS (PAH)										
Total PAHs ⁽⁴⁾			ug/kg	4,022	44,792			NT	NT	NT	NT	NT
2-Methylnaphthalene	EPA 8270C	n/a	ug/kg	70	670	670	1,900	NT	NT	NT	NT	NT
Acenaphthene	EPA 8270C	n/a	ug/kg	16	500	500	2,000	NT	NT	NT	NT	NT
Acenaphthylene	EPA 8270C	n/a	ug/kg	44	640	560	1,300	NT	NT	NT	NT	NT
Anthracene	EPA 8270C	n/a	ug/kg	85.3	1,100	960	13,000	NT	NT	NT	NT	NT
Benzo(a)anthracene	EPA 8270C	n/a	ug/kg	261	1,600	1,300	5,100	NT	NT	NT	NT	NT
Benzo(a,e)pyrene	EPA 8270C	n/a	ug/kg	430	1,600	1,600	3,600	NT	NT	NT	NT	NT
Benzo(b)fluoranthene	EPA 8270C	n/a	ug/kg			1,600	4,950	NT	NT	NT	NT	NT
Benzo(k)fluoranthene	EPA 8270C	n/a	ug/kg			1,600	4,950	NT	NT	NT	NT	NT
Benzo(g,h,i)perylene	EPA 8270C	n/a	ug/kg			670	3,200	NT	NT	NT	NT	NT

				Sedim	ent Quality	Guidelines	(SQGs)	_				
Abbreviations used for SOG's:		Reporting							Sam	ole Testing Re	esults (3)	
ERL = "effects range -low";		Limit /						NOV) (D)	NGY	NOV) (D)
ERM = "effects range - medium";	A 1 C 1	Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical Mathed ⁽¹⁾	L imit ^(1a)	Limita (2)	(T)	1 1000	(DCDD)	2000)	14-01	15-01	15-01	15-01	15-01
NIL – maximum level	Method	Linnt	Units	(Long et	al., 1999)	(PSDDA	A, 2000)	16-21.5	12-10	10-20	20-30	30-40
Chrysene	EPA 8270C	n/a	ug/kg	384	2,800	1,400	21,000	NT	NT	NT	NT	NT
Dibenzo(a,h)anthracene	EPA 8270C	n/a	ug/kg	63.4	260	230	1,900	NT	NT	NT	NT	NT
Fluoranthene	EPA 8270C	n/a	ug/kg	600	5,100	1,700	30,000	NT	NT	NT	NT	NT
Fluorene	EPA 8270C	n/a	ug/kg	19	540	540	3,600	NT	NT	NT	NT	NT
Indeno(1,2,3-cd)pyrene	EPA 8270C	n/a	ug/kg			600	4,400	NT	NT	NT	NT	NT
Naphthalene	EPA 8270C	n/a	ug/kg	160	2,100	2,100	2,400	NT	NT	NT	NT	NT
Phenanthrene	EPA 8270C	n/a	ug/kg	240	1,500	1,500	21,000	NT	NT	NT	NT	NT
Pyrene	EPA 8270C	n/a	ug/kg	665	2,600	2,600	16,000	NT	NT	NT	NT	NT
PHENOLS												
Total Phenols ⁽⁴⁾			ug/kg			1582	5777	NT	NT	NT	NT	NT
2,4-Dimethylphenol	EPA 8270C	n/a	ug/kg			29	210	NT	NT	NT	NT	NT
2-Methylphenol	EPA 8270C	n/a	ug/kg			63	77	NT	NT	NT	NT	NT
4-Methylphenol	EPA 8270C	n/a	ug/kg			670	3,600	NT	NT	NT	NT	NT
Pentachlorophenol	EPA 8270C	n/a	ug/kg			400	690	NT	NT	NT	NT	NT

Eighth set of five samples-- lower part of hole 15-01:

			Mada al		Sedim	ent Quality	Guidelines ((SQGs)				
Ab	obreviations used for SQG's:		Reporting						Samj	ple Testing Re	esults (3)	
EF EF	RL = "effects range - low"; RM = "effects range - medium";	Amplytical	Limit / Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-
M	L = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)	48-58'	58-68'	68-78'	78-85'
PHY	SICAL/CONVENTIONALS											
	Total Solids (wet weight)	EPA 160.3M	0.01	%					71.8	72.3	69.4	67.2
	Total Volatile Solids (wet weight)	SM 2540G	0.01	%					3.54	4.48	5.24	5.65
	pН	EPA 9045	0.1	pH units					7.1	7.0	7.2	7.2
	Ammonia								76.4 w/	90.6 w/	108 w/	106 w/
									MRL 0.2 /	MRL 0.2 /	MRL 0.2 /	MRL 0.2 /
		EPA 350.1M	0.2 / 0.2	mg/kg					MDL 0.2	MDL 0.2	MDL 0.2	MDL 0.2
	Total Organic Carbon	EPA 9060M	500/ 300	mg/kg					10300	13600	12100	11900

Att	achment 3, contin.—Ma	atilija Dam re	emoval stu	ıdytest	t results	for pot	ential]				
cor	taminants in impounde	d sediments.											
					Sedim	ent Quality	Guidelines ((SQGs)					
At	breviations used for SOG's:		Reporting							Sam	ple Testing Re	esults (3)	
EH EH SL	RL = "effects range - low"; RM = "effects range - medium"; = "screening level"	Analytical	Limit / Method Detection	XX (2)	ERL	ERM	SL	ML		MDH- 15-01	MDH- 15-01	MDH- 15-01	MDH- 15-01
M	L = "maximum level"	Method (1)	Limit ^(ra)	Units (2)	(Long et	al., 1999)	(PSDDA	4, 2000)		48-58'	58-68'	68-78	78-85
	Soluble Sulfides	EPA/CE-81-1	0.1	mg/kg					-	30	35	312	75
	Total Sulfides	EPA 9030B	3	mg/kg						5	10	74	41
	Calcium carbonate	ASTM D-4373	0.1	%						0.20	0.52	0.36	0.20
	Oil and Grease	EPA 413.2	10	mg/kg					-	22	30	32	24
	Total Recoverable Petroleum Hydrocarbons	EPA 413.1	10	mg/kg						30	30	34	20
MET	TALS												
	Antimony (Sb)	EPA 6020	varies see test columns	mg/kg			15	200		0.14 w/ MRL 0.06 / MDL 0.04	0.12 w/ MRL 0.06 / MDL 0.03	0.15 w/ MRL 0.05 / MDL 0.03	0.18 w/ MRL 0.05 / MDL 0.03
	Arsenic (As)	EPA 6020	varies see test columns	mg/kg	8.2	70	57	700		7.2 w/ MRL 0.6 / MDL 0.2	7.2 w/ MRL 0.6 / MDL 0.2	7.6 w/ MRL 0.5 / MDL 0.2	8.7 w/ MRL 0.5 / MDL 0.2
	Cadmium (Cd)	EPA 6020	varies see test columns	mg/kg	1.2	9.6	5.1	14		0.34 w/ MRL 0.06 / MDL 0.04	0.31 w/ MRL 0.06 / MDL 0.03	0.35 w/ MRL 0.05 / MDL 0.03	0.40 w/ MRL 0.05 / MDL 0.03
	Chromium (Cr)	EPA 6020	varies see test columns	mg/kg	81	370				30.8 w/ MRL 0.24 / MDL 0.05	29.5 w/ MRL 0.23 / MDL 0.05	32.0 w/ MRL 0.21 / MDL 0.04	41.1 w/ MRL 0.21 / MDL 0.04
	Copper (Cu)	EPA 6020	varies see test columns	mg/kg	34	270	390	1,300		33.4 w/ MRL 0.12 / MDL 0.06	31.4 w/ MRL 0.11 / MDL 0.06	38.0 w/ MRL 0.10 / MDL 0.05	42.1 w/ MRL 0.11 / MDL 0.05
	Lead (Pb)	EPA 6020	varies see test columns	mg/kg	46.7	218	450	1,200		18.8 w/ MRL 0.06 / MDL 0.05	17.6 w/ MRL 0.06 / MDL 0.05	20.0 w/ MRL 0.05 / MDL 0.04	24.1 w/ MRL 0.05 / MDL 0.04
	Mercury (Hg)	EPA 7471A	varies see test columns	mg/kg	0.15	0.71	0.41	2.3		0.135 w/ MRL 0.016 / MDL 0.008	0.195 w/ MRL 0.014 / MDL 0.007	0.094 w/ MRL 0.016 / MDL 0.008	0.102 w/ MRL 0.017 / MDL 0.009
	Nickel (Ni)	EPA 6020	varies see test columns	mg/kg	20.9	51.6	140	370		26.6 w/ MRL 0.6 / MDL 0.4	26.2 w/ MRL 0.6 / MDL 0.3	27.9 w/ MRL 0.5 / MDL 0.3	34.5 w/ MRL 0.5 / MDL 0.3
	Selenium (Se)	EPA 7742	varies see test columns	mg/kg						0.70 w/ MRL 0.24 / MDL 0.04	0.68 w/ MRL 0.23 / MDL 0.03	0.79 w/ MRL 0.21 / MDL 0.03	0.82 w/ MRL 0.21 / MDL 0.03
	Silver (Ag)	EPA 6020	varies see test columns	mg/kg	1	3.7	6.1	8.4		0.12 w/ MRL 0.02 / MDL 0.01	0.12 w/ MRL 0.02 / MDL 0.01	0.14 w/ MRL 0.02 / MDL 0.01	0.33 w/ MRL 0.02 / MDL 0.01

Attachment 3, continMatilija Dam removal studytest results for	r potential
contaminants in impounded sediments.	

				Sedim	ent Quality	Guidelines	(SQGs)				
Abbreviations used for SQG's:		Method Reporting							Sample Testing	Results (3)	
ERL = "effects range -low";		Limit /								MDU	MDU
ERM = "effects range - medium"; SL = "screening level"	Analytical	Method Detection		ERL	ERM	SL	ML	MD 15-	H- MDH-	MDH- 15-01	MDH- 15-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al 1999)	(PSDD)	A 2000)	48-	58' 58-68'	68-78'	78-85'
Zinc (Zn)		varies		(Long et	ui., 1999)	(I BBBI	1, 2000)	89.4	w/ 86.5 w/	92.7 w/	112 w/
		see test						MRL	0.6 / MRL 0.6	MRL 0.5 /	MRL 0.5 /
	EPA 6020	columns	mg/kg	150	410	410	3,800	MDL	0.4 MDL 0.3	MDL 0.3	MDL 0.3
ORGANICS											
PESTICIDES											
Total Chlorinated Pesticides (4)			ug/kg	6.8	108.1	56.9	69.0	NI	2.4	3.5	ND
Aldrin		varies						ND	w/ ND w/	ND w/	ND w/
	EDA 8081A	see tests	ua/ka			10		MRL	15 / MRL 14 / 3 3 MDL 3 3	MRL 15 / MDL 3 4	MRL 15 / MDL 3 5
alpha BHC	EIA 6061A	varies	ug/kg			10		ND	3.5 WDL 3.5	ND w/	ND w/
alpha BHC		see tests						MRL	15/ MRL 14/	MRL 15 /	MRL 15 /
	EPA 8081A	column	ug/kg					MDL	1.5 MDL 3.2	MDL 1.5	MDL 1.6
alpha-Chlordane		varies						ND	w/ ND w/	ND w/	ND w/
		see tests						MRL	15 / MRL 14 /	MRL 15 /	MRL 15 /
	EPA 8081A	column	ug/kg			10		MDL	1.6 MDL 1.5	MDL 1.6	MDL 1.6
beta-BHC		varies						ND	w/ ND w/	ND w/	ND w/
		see tests	··· - /]					MRL	15/ MRL 14/	MRL 15 /	MRL 15 /
dolta PHC	EPA 8081A	vorios	ug/kg					MDL	2.1 MDL 2.1	MDL 2.2	MDL 2.2
denta-BIIC		see tests						MRL	15/ MRL 14	MRL 15 /	MRL 15 /
	EPA 8081A	column	ug/kg					MDL	5.3 MDL 5.1	MDL 5.4	MDL 5.5
Dieldrin		varies						ND	w/ ND w/	ND w/	ND w/
		see tests						MRL	15 / MRL 14 /	MRL 15 /	MRL 15 /
	EPA 8081A	column	ug/kg	0.02	8.0	10		MDL	4.4 MDL 4.3	MDL 4.7	MDL 4.6
Endosulfan I		varies						ND	w/ ND w/	ND w/	ND w/
		see tests	··· - /]					MRL	15 / MRL 14 /	MRL 15 /	MRL 15 /
Endoquifan II	EPA 8081A	column	ug/kg					MDL	1.8 MDL 1.7	MDL 1.8	MDL 1.9
		varies						MRI	W/ NDW/	MRI 15 /	MRI 15 /
	EPA 8081A	column	ug/kg					MDL	1.9 MDL 3.0	MDL 3.2	MDL 3.3
Endosulfan Sulfate		varies						ND	w/ ND w/	ND w/	ND w/
		see tests						MRL	15 / MRL 14 /	MRL 15 /	MRL 15 /
	EPA 8081A	column	ug/kg					MDL	2.3 MDL 2.2	MDL 2.3	MDL 2.4
Endrin		varies						ND	w/ ND w/	ND w/	ND w/
		see tests	а					MRL	15/ MRL 14/	MRL 15 /	MRL 15 /
DUCL: 1	EPA 8081A	column	ug/kg					MDL	1.9 MDL 1.9	MDL 1.9	MDL 2.0
gamma-BHC Lindane	EDA 0001A	varies	ug/kg			10		ND MDI	W/ NDW/ 15/ MDI 14	ND W/ MDI 15 /	ND W/ MRI 15 /
	EFA 8081A	see lesis	ug/kg			10		MIKL	13/ WIKL 14/	WIKL 13/	IVIKL 10/

ontaminants in impounde	atilija Dam r d sediments.	emoval sti	idytesi	t results	s for pot	ential						
				Sedim	nent Quality	Guidelines	(SQGs)	-				
Abbreviations used for SQG's: ERL = "effects range -low"; ERM = "effects range - medium";		Method Reporting Limit / Method		ERL	ERM	SL	ML		Sam MDH-	ple Testing Ro MDH-	esults ⁽³⁾ MDH-	MDH-
SL = "screening level" ML = "maximum level"	Analytical Method ⁽¹⁾	Detection Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	A, 2000)		15-01 48-58'	15-01 58-68'	15-01 68-78'	15-01 78-85'
		column							MDL 15	MDL 14	MDL 15	MDL 15
gamma-Chlordane	EPA 8081A	varies see tests column	ug/kg						ND w/ MRL 15 / MDL 2.1	ND w/ MRL 14 / MDL 2.1	ND w/ MRL 15 / MDL 2.2	ND w/ MRL 15 / MDL 2.2
Heptachlor	EPA 8081A	varies see tests column	ug/kg			10			ND w/ MRL 15 / MDL 2.0	ND w/ MRL 14 / MDL 1.9	ND w/ MRL 15 / MDL 2.0	ND w/ MRL 15 / MDL 2.0
Toxaphene	EPA 8081A	varies see tests column	ug/kg						ND w/ MRL 710 / MDL 80	ND w/ MRL 690 / MDL 78	ND w/ MRL 720 / MDL 81	ND w/ MRL 740 MDL 83
Total DDT ⁽⁵⁾	EPA 8081A	varies see tests column	ug/kg	1.58	46.1	6.9	69.0		ND	2.4	3.5	ND
4,4'-DDD	EPA 8081A	varies see tests column	ug/kg	1.0	7.0				ND w/ MRL 15 / MDL 2.2	2.4 w/ MRL 14 / MDL 2.1	3.5 w/ MRL 15 / MDL 2.2	ND w/ MRL 15 / MDL 2.3
4,4'-DDE	EPA 8081A	varies see tests	119/kg	2.2	2.7				ND w/ MRL 15 / MDL 3 5	ND w/ MRL 14 / MDL 3 4	ND w/ MRL 15 / MDL 3 6	ND w/ MRL 15 / MDL 3 7
4,4'-DDT	EPA 8081A	varies see tests	119/kg	2.0	20				ND w/ MRL 15 / MDL 2.4	ND w/ MRL 14 / MDL 2.4	ND w/ MRL 15 / MDL 2 5	ND w/ MRL 15 / MDL 2.5
Heptachlor Epoxide	EPA 8081A	varies see tests	110/kg						ND w/ MRL 15 / MDL 2 0	ND w/ MRL 14 / MDL 1.9	ND w/ MRL 15 / MDL 2 0	ND w/ MRL 15 / MDL 2 1
Endrin Aldehyde	EPA 8081A	varies see tests	110/kg						ND w/ MRL 15 / MDL 5 0	ND w/ MRL 14 / MDL 4 9	ND w/ MRL 15 / MDL 5 1	ND w/ MRL 15 / MDL 5 3
Endrin Ketone	EPA 80814	varies see tests	110/kg						ND w/ MRL 15 / MDL 2 3	ND w/ MRL 14 / MDL 5 2	ND w/ MRL 15 / MDL 7 4	ND w/ MRL 15 / MDL 2 4
Methoxychlor	EPA 8081A	varies see tests column	ug/kg						ND w/ MRL 15 / MDL 2.3	ND w/ MRL 14 / MDL 2.3	ND w/ MRL 15 / MDL 2.4	ND w/ MRL 15 / MDL 2.4
ORGANOTINS												
Total Organotins ⁽⁴⁾			ug/kg						NT	NT	NT	NT
Monobutyltin (n-Butyltin)	Krone	n/a	ug/kg						NT	NT	NT	NT

Attachment 3 contin Matilija Dam removal study test results for notential

Attachment 3, contin.—Matilija Dam removal studytest results for	or potential
contaminants in impounded sediments.	

				Sedim	ent Quality	Guidelines	(SQGs)				
Abbreviations used for SOG's:		Method						Sam	nle Testing Re	esults (3)	
ERL = "effects range -low".		Limit /						Juin	pie resting its	.50115	
ERM = "effects range - medium";		Method		ERL	ERM	SL	ML.	MDH-	MDH-	MDH-	MDH-
SL = "screening level"	Analytical	Detection		LITE	LIUI	5L	IVIL	15-01	15-01	15-01	15-01
ML = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDDA	4, 2000)	48-58'	58-68'	68-78'	78-85'
Di-n-butyltin	Krone	n/a	ug/kg					NT	NT	NT	NT
Tri-n-butyltin	Krone	n/a	ug/kg					NT	NT	NT	NT
Tetra-n-butyltin	Krone	n/a	ug/kg			0.15 (7)		NT	NT	NT	NT
PHTHALATES											
Total phthalates ⁽⁴⁾			ug/kg			23,170		NT	NT	NT	NT
Bis (2-ethylhexyl) phthalate	EPA 8270C	n/a	ug/kg			8,300		NT	NT	NT	NT
Butyl benzyl phthalate	EPA 8270C	n/a	ug/kg			970		NT	NT	NT	NT
Diethyl phthalate	EPA 8270C	n/a	ug/kg			1,200		NT	NT	NT	NT
Dimethyl phthalate	EPA 8270C	n/a	ug/kg			1,400		NT	NT	NT	NT
Di-n-butyl phthalate	EPA 8270C	n/a	ug/kg			5,100		NT	NT	NT	NT
Di-n-octyl phthalate	EPA 8270C	n/a	ug/kg			6,200		NT	NT	NT	NT
POLYCHLORINATED BIPHE	NYLS (PCB)										
Total PCBs ⁽⁴⁾			ug/kg	22.7	180	130	3,100	NT	NT	NT	NT
Aroclor 1016	EPA 8082	n/a	ug/kg					NT	NT	NT	NT
Aroclor 1221	EPA 8082	n/a	ug/kg					NT	NT	NT	NT
Aroclor 1232	EPA 8082	n/a	ug/kg					NT	NT	NT	NT
Aroclor 1242	EPA 8082	n/a	ug/kg					NT	NT	NT	NT
Aroclor 1248	EPA 8082	n/a	ug/kg					NT	NT	NT	NT
Aroclor 1254	EPA 8082	n/a	ug/kg					NT	NT	NT	NT
Aroclor 1260	EPA 8082	n/a	ug/kg					NT	NT	NT	NT
POLYNUCLEAR AROMATICS	S HYDROCARB	ONS (PAH)									
Total PAHs (4)			ug/kg	4,022	44,792			NT	NT	NT	NT
2-Methylnaphthalene	EPA 8270C	n/a	ug/kg	70	670	670	1,900	NT	NT	NT	NT
Acenaphthene	EPA 8270C	n/a	ug/kg	16	500	500	2,000	NT	NT	NT	NT
Acenaphthylene	EPA 8270C	n/a	ug/kg	44	640	560	1,300	NT	NT	NT	NT
Anthracene	EPA 8270C	n/a	ug/kg	85.3	1,100	960	13,000	NT	NT	NT	NT
Benzo(a)anthracene	EPA 8270C	n/a	ug/kg	261	1,600	1,300	5,100	NT	NT	NT	NT
Benzo(a,e)pyrene	EPA 8270C	n/a	ug/kg	430	1,600	1,600	3,600	NT	NT	NT	NT
Benzo(b)fluoranthene	EPA 8270C	n/a	ug/kg			1,600	4,950	NT	NT	NT	NT
Benzo(k)fluoranthene	EPA 8270C	n/a	ug/kg			1,600	4,950	NT	NT	NT	NT
Benzo(g,h,i)perylene	EPA 8270C	n/a	ug/kg			670	3,200	NT	NT	NT	NT
Chrysene	EPA 8270C	n/a	ug/kg	384	2,800	1,400	21,000	NT	NT	NT	NT
Dibenzo(a,h)anthracene	EPA 8270C	n/a	ug/kg	63.4	260	230	1,900	NT	NT	NT	NT
Fluoranthene	EPA 8270C	n/a	ug/kg	600	5,100	1,700	30,000	NT	NT	NT	NT

	-		Matha d		Sedim	ent Quality	Guidelines	(SQGs)				
Ab	breviations used for SQG's:		Reporting						Samj	ple Testing Re	esults (3)	
ER ER	L = "effects range - low"; M = "effects range - medium";	Ampletical	Limit / Method		ERL	ERM	SL	ML	MDH-	MDH-	MDH-	MDH-
M	L = "maximum level"	Method ⁽¹⁾	Limit ^(1a)	Units (2)	(Long et	al., 1999)	(PSDD/	A, 2000)	48-58'	58-68'	68-78'	78-85'
	Fluorene	EPA 8270C	n/a	ug/kg	19	540	540	3,600	NT	NT	NT	NT
	Indeno(1,2,3-cd)pyrene	EPA 8270C	n/a	ug/kg			600	4,400	NT	NT	NT	NT
	Naphthalene	EPA 8270C	n/a	ug/kg	160	2,100	2,100	2,400	NT	NT	NT	NT
	Phenanthrene	EPA 8270C	n/a	ug/kg	240	1,500	1,500	21,000	NT	NT	NT	NT
	Pyrene	EPA 8270C	n/a	ug/kg	665	2,600	2,600	16,000	NT	NT	NT	NT
	PHENOLS											
	Total Phenols ⁽⁴⁾			ug/kg			1582	5777	NT	NT	NT	NT
	2,4-Dimethylphenol	EPA 8270C	n/a	ug/kg			29	210	NT	NT	NT	NT
	2-Methylphenol	EPA 8270C	n/a	ug/kg			63	77	NT	NT	NT	NT
	4-Methylphenol	EPA 8270C	n/a	ug/kg			670	3,600	NT	NT	NT	NT
	Pentachlorophenol	EPA 8270C	n/a	ug/kg			400	690	NT	NT	NT	NT

(1) Analytical Method

EPA = United States Environmental Protection Agency

EPA Methods are EPA SW-846, 1994 3rd Edition or EPA 600/4-79-020, March 1983

SM = Standard Methods for wastewater analysis

ASTM = American Society for Testing and Materials

Plumb = Procedure for Handling and Chemical Analysis of Sediment and Water Samples. Tech Rep. USEPA/CE-81, Russell H. Plumb, Jr., 1981. Krone =

(1a) If only one value is listed in the column, it is the MRL (method reporting limit); the second value listed in this column is the MDL (the method detection limit). In the individual test results columns, if a numerical value is listed, that analyte is present, but is <u>quantifiable</u> only if value listed also is above the MRL (method reporting limit); analyte values in numerical range <u>between</u> the MDL and MRL are estimates only; condition usually due to interference within the testing machinery from other substances within the sample.

(2) Units: all listed values based on dry weight unless otherwise noted; ug/kg = micrograms per kilogram, parts per billion; mg/kg = milligrams per kilogram, parts per million (dry weight unless otherwise noted)

(3) ND = not detected at or above lowest Method Detection Limit value for the particular compound(s) of interest NT = not tested for a given analyte

(4) Total Chlorinated Pesticides, Total Organotins (Butyltins), Total Phthalates, Total PCBs, Total PAHs, and Total Phenols = sum of named compounds and their derivatives

- (5) Total DDT = sum of 4,4'-DDE; 4,4'-DDD; and 4,4'-DDT
- (7) Tributyltin (interstitial water)

br

Attachment 4 The EDR, Inc. regulatory database search results --see separate electronic .pdf format file for this information-named "attach 4_matilsesrept.pdf

The EDR Corridor Study Report

Study Area Matilija Reservoir Ojai, CA 93023

April 11, 2002

Inquiry number 760139.1s

The Source For Environmental Risk Management Data

3530 Post Road Southport, Connecticut 06490

Nationwide Customer Service

 Telephone:
 1-800-352-0050

 Fax:
 1-800-231-6802

 Internet:
 www.edrnet.com

A search of available environmental records was conducted by Environmental Data Resources, Inc. (EDR).

TARGET PROPERTY INFORMATION

ADDRESS

MATILIJA RESERVOIR OJAI, CA 93023

DATABASES WITH NO MAPPED SITES

No mapped sites were found in EDR's search of available ("reasonably ascertainable") government records within the requested search area for the following databases:

FEDERAL ASTM STANDARD

NPL	National Priority List
Proposed NPL	Proposed National Priority List Sites
CERCLIS	Comprehensive Environmental Response, Compensation, and Liability Information
	System
CERC-NFRAP	CERCLIS No Further Remedial Action Planned
CORRACTS	Corrective Action Report
RCRIS-TSD	Resource Conservation and Recovery Information System
RCRIS-LQG	Resource Conservation and Recovery Information System
RCRIS-SQG	Resource Conservation and Recovery Information System
ERNS	Emergency Response Notification System

STATE ASTM STANDARD

AWP	Annual Workplan Sites
Cal-Sites	Calsites Database
CHMIRS	California Hazardous Material Incident Report System
Notify 65	Proposition 65 Records
Toxic Pits	Toxic Pits Cleanup Act Sites
SWF/LF	Solid Waste Information System
WMUDS/SWAT	Waste Management Unit Database
CA BOND EXP. PLAN	Bond Expenditure Plan
CA FID UST	Facility Inventory Database

FEDERAL ASTM SUPPLEMENTAL

CONSENT	Superfund (CERCLA) Consent Decrees
ROD	Records Of Decision
Delisted NPL	National Priority List Deletions
FINDS	Facility Index System/Facility Identification Initiative Program Summary Report
HMIRS	Hazardous Materials Information Reporting System
MLTS	Material Licensing Tracking System
MINES	Mines Master Index File
NPL Liens	Federal Superfund Liens
PADS	PCB Activity Database System
RAATS	RCRA Administrative Action Tracking System
TRIS	Toxic Chemical Release Inventory System

TSCA	Toxic Substances Control Act
FTTS	FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, &
	Rodenticide Act)/TSCA (Toxic Substances Control Act)

STATE OR LOCAL ASTM SUPPLEMENTAL

AST	Aboveground Petroleum Storage Tank Facilities
CLEANERS	Cleaner Facilities
CA WDS	Waste Discharge System
DEED	List of Deed Restrictions
CA SLIC	Spills, Leaks, Investigation & Cleanup Cost Recovery Listing
HAZNET	Hazardous Waste Information System

EDR PROPRIETARY HISTORICAL DATABASES

Coal Gas_____ Former Manufactured Gas (Coal Gas) Sites

SURROUNDING SITES: SEARCH RESULTS

Surrounding sites were identified.

Page numbers and map identification numbers refer to the EDR Radius Map report where detailed data on individual sites can be reviewed.

Sites listed in *bold italics* are in multiple databases.

Unmappable (orphan) sites are not considered in the foregoing analysis.

STATE ASTM STANDARD

CORTESE: This database identifies public drinking water wells with detectable levels of contamination, hazardous substance sites selected for remedial action, sites with known toxic material identified through the abandoned site assessment program, sites with USTs having a reportable release and all solid waste disposal facilities from which there is known migration. The source is the California Environmental Protection Agency/Office of Emergency Information.

A review of the Cortese list, as provided by EDR, has revealed that there is 1 Cortese site within the searched area.

Site	Address	Map ID	Page
MC INNES RANCH	350 RICE RD	2	3

LUST: The Leaking Underground Storage Tank Incident Reports contain an inventory of reported leaking underground storage tank incidents. The data come from the State Water Resources Control Board Leaking Underground Storage Tank Information System.

A review of the LUST list, as provided by EDR, and dated 01/17/2002 has revealed that there is 1 LUST site within the searched area.

Site	Address	Map ID	Page
MC INNES RANCH	350 RICE RD	2	3

UST: The Underground Storage Tank database contains registered USTs. USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA). The data come from the State Water Resources Control Board's Hazardous Substance Storage Container Database.

A review of the UST list, as provided by EDR, and dated 01/17/2002 has revealed that there is 1 UST site within the searched area.

Site	Address	Map ID	Page
MCINNES RANCH	350 RICE ROAD	2	4

HIST UST: Historical UST Registered Database.

A review of the HIST UST list, as provided by EDR, and dated 10/15/1990 has revealed that there are 2 HIST UST sites within the searched area.

Site	Address	Map ID	Page
<i>MCINNES RANCH</i>	<i>350 RICE ROAD</i>	2	4
FLYING H INC	484 CAMINO CIELO	3	5

Please refer to the end of the findings report for unmapped orphan sites due to poor or inadequate address information.

MAP FINDINGS SUMMARY

	Database	Total Plotted
FEDERAL ASTM STANDARD	2	
	NPL Proposed NPL CERCLIS CERC-NFRAP CORRACTS RCRIS-TSD RCRIS Lg. Quan. Gen. RCRIS Sm. Quan. Gen. ERNS	0 0 0 0 0 0 0 0 0
STATE ASTM STANDARD		
	AWP Cal-Sites CHMIRS Cortese Notify 65 Toxic Pits State Landfill WMUDS/SWAT LUST CA Bond Exp. Plan UST CA FID UST HIST UST	0 0 1 0 0 0 0 0 1 0 1 0 2
FEDERAL ASTM SUPPLEME	INTAL	
	CONSENT ROD Delisted NPL FINDS HMIRS MLTS MINES NPL Liens PADS RAATS TRIS TSCA FTTS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATE OR LOCAL ASTM SU	PPLEMENTAL	
	AST CLEANERS	0 0

MAP FINDINGS SUMMARY

Database	Total Plotted				
CA WDS DEED CA SLIC HAZNET	0 0 0 0				
EDR PROPRIETARY HISTORICAL DATABASES					
Coal Gas	0				

* Sites may be listed in more than one database

EDR ID Number

Database(s)

EPA ID Number

Coal Gas Site Search: No site was found in a search of Real Property Scan's ENVIROHAZ database.

1	PRO EX. FORK LIFT PROPANE 3260 MATILIJA CANYON RD OJAI, CA			VENTURA	CO. BWT	S104994411 N/A	
	BWT: Facility ID: Region: Information Type:	0-004425 VENTURA Business Plan					
2	MC INNES RANCH 350 RICE RD OXNARD, CA 93030				LUST Cortese	S102433138 N/A	
	State LUST: Cross Street: Qty Leaked: Case Number Reg Board: Chemical: Lead Agency: Local Agency: Case Type: Status: County: Abate Method: Review Date: Workplan: Pollution Char: Remed Action: Close Date: Release Date: Cleanup Fund Id Discover Date : Enforcement Dt : Enforcemen	COLONIA Not reported C-88069 Los Angeles Region Diesel Regional Board 56000 Other ground water affected Signed off, remedial action co Ventura Excavate and Treat - remove spreading or land farming), Pu employed to remove dissolved Not reported 9/27/1989 Not reported 10/7/1992 3/31/1994 5/1/1988 Not reported Not repo	mpleted or deemed unnecessa contaminated soil and treat (in imp and Treat Ground Water - d contaminants Confirm Leak: Prelim Assess: Remed Plan: Monitoring:	ary cludes generally Not reported 9/27/1989 Not reported 10/7/1992			

Map ID Direction Distance Distance (ft.)Site

EDR ID Number

Database(s) EPA ID Number

S102433138

MC INNES RANCH (Continued)

Oversight Prgm: UST Review Date : 3/25/1994 Stop Date : Not reported Work Suspended :Not reported Responsible PartyTHE SAMMIS COMPANY RP Address: 650 HAMPSHIRE RD, STE 200, WESTLAKE VILLAGE, CA 91316 Global Id: T0611100316 Not reported Org Name: Contact Person: Not reported MTBE Conc: 0 Mtbe Fuel: 0 Water System Name: HAILWOOD INC WATER SYSTEM NO 9 Well Name: WELL 09 Distance To Lust: 4551.9100308717628396884248687 Waste Discharge Global ID: W0611102510 Waste Disch Assigned Name: 01N/21W-06L05 S LUST Region 4: 5/1/1988 Report Date: **Regional Board** Lead Agency: 56000 Local Agency: Case Number: C-88069 Substance: Diesel

 Case Type:
 Groundwater

 Status:
 Signed off, remedial action completed or deemed unnecessary

 Region:
 4

 Staff:
 Not reported

LUST Region VN: Facility ID: 88069 Status: Active

CORTESE:

ORTESE: Reg Id: C-88069 Region: CORTESE Reg By: Leaking Underground Storage Tanks

2

MCINNES RANCH 350 RICE ROAD OXNARD, CA 93030

UST HIST

UST	U001579802
HIST UST	N/A

ST HIST:			
Facility ID:	22535		
Tank Num:	1	Container Num:	ONE
Tank Capacity:	550	Year Installed:	Not reported
Tank Used for:	PRODUCT		
Type of Fuel:	UNLEADED	Tank Construction:	Not reported
Leak Detection:	Pressure Test		
Contact Name:	DONALD DUTAN	Telephone:	(805) 485-5511
Total Tanks:	2	Region:	STATE
Facility Type:	2	Other Type:	RANCH
Facility ID:	22535		
Tank Num:	2	Container Num:	TWO
Tank Capacity:	280	Year Installed:	Not reported
Tank Used for:	PRODUCT		
Type of Fuel:	DIESEL	Tank Construction:	Not reported
Leak Detection:	Pressure Test		
Contact Name:	DONALD DUTAN	Telephone:	(805) 485-5511
Total Tanks:	2	Region:	STATE

Man ID			MAP FINDINGS				
Direction							EDR ID Number
Distance (f	t.)Site					Database(s)	EPA ID Number
	MCINNES RANCH (C	continued)					U001579802
	Facility Type:	2		Other Type:	RANCH		
	UST Ventura Count Facility ID: Facility Status: Box No: Region:	y Active & Inactive: D 525 INACTIVE UGTCLO 04 Ventura County					
3	FLYING H INC 484 CAMINO CIELO OJAI, CA 93023					HIST UST	U001579628 N/A
	UST HIST: Facility ID: Tank Num: Tank Capacity: Tank Used for: Type of Fuel: Leak Detection: Contact Name: Total Tanks: Facility Type:	1148 1 550 PRODUCT REGULAR None Not reported 1 2		Container Num: Year Installed: Tank Construction: Telephone: Region: Other Type:	1 Not report (000) 000 STATE Not report	rted rted D-0000 rted	

ORPHAN SUMMARY

City	EDR ID	Site Name	Site Address	Zip	Database(s)	Facility ID
MARICOPA	S102440620	USFS-OZENA STATION	HIGHWAY 33	93023	LUST	89176
OJAI	1000350400	HAPPY VALLEY SCHOOL	8585 HWY 150	93023	RCRIS-SQG, FINDS	
OJAI	S103678938	COUNTY OF VENTURA PUBLIC WORKS AGCY	HWY 33 / RANCHO RD	93023	HAZNET	CAH111000546
OJAI	U003101567	U. S. FOREST SERVICE-OZENA	HWY 33		UST	D 341
OJAI	S104566963	ROSE VALLEY	APPROX 15 MI FROM OJAI ON HWY 33	93023	HAZNET	CAC001386056
OJAI	S103954555	CALTRANS DISTRICT 7	1116 MARICOPA HYW	93023	HAZNET	CAD982470072
OJAI	S104994405	ROYAL CLEANERS	1205 MARICOPA HW #B	93023	VENTURA CO. BWT	0-003149
OJAI	U003142352	RAME, JACK APACHE CYN RANCH	31046 MARICOPA HWY		UST	D1245
OJAI	S101482848	FARMONT CORPORATION	OFF HWY 150 AT RANCHO MATILIJA	93023	Cal-Sites	56010005
OJAI	S102363101	OJAI REFUSE TRANSFER STATION	OLD BALDWIN ROAD		SWF/LF	56-AA-0002

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

To maintain currency of the following federal and state databases, EDR contacts the appropriate governmental agency on a monthly or quarterly basis, as required.

Elapsed ASTM days: Provides confirmation that this EDR report meets or exceeds the 90-day updating requirement of the ASTM standard.

FEDERAL ASTM STANDARD RECORDS

NPL: National Priority List

Source: EPA Telephone: N/A

National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices.

Date of Government Version: 01/29/02 Date Made Active at EDR: 02/25/02 Database Release Frequency: Semi-Annually

NPL Site Boundaries

Sources:

EPA's Environmental Photographic Interpretation Center (EPIC) Telephone: 202-564-7333

EPA Region 1 Telephone 617-918-1143

EPA Region 3 Telephone 215-814-5418

EPA Region 4 Telephone 404-562-8033

Proposed NPL: Proposed National Priority List Sites

Source: EPA Telephone: N/A

> Date of Government Version: 01/17/02 Date Made Active at EDR: 02/25/02 Database Release Frequency: Semi-Annually

Date of Data Arrival at EDR: 02/04/02 Elapsed ASTM days: 21 Date of Last EDR Contact: 02/04/02

EPA Region 6 Telephone: 214-655-6659

EPA Region 8 Telephone: 303-312-6774

> Date of Data Arrival at EDR: 02/04/02 Elapsed ASTM days: 21 Date of Last EDR Contact: 02/04/02

CERCLIS: Comprehensive Environmental Response, Compensation, and Liability Information System

Source: EPA

Telephone: 703-413-0223

CERCLIS contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLIS contains sites which are either proposed to or on the National Priorities List (NPL) and sites which are in the screening and assessment phase for possible inclusion on the NPL.

Date of Government Version: 11/21/01 Date Made Active at EDR: 02/04/02 Database Release Frequency: Quarterly Date of Data Arrival at EDR: 12/26/01 Elapsed ASTM days: 40 Date of Last EDR Contact: 12/26/01

CERCLIS-NFRAP: CERCLIS No Further Remedial Action Planned

Source: EPA Telephone: 703-413-0223

As of February 1995, CERCLIS sites designated "No Further Remedial Action Planned" (NFRAP) have been removed from CERCLIS. NFRAP sites may be sites where, following an initial investigation, no contamination was found, contamination was removed quickly without the need for the site to be placed on the NPL, or the contamination was not serious enough to require Federal Superfund action or NPL consideration. EPA has removed approximately 25,000 NFRAP sites to lift the unintended barriers to the redevelopment of these properties and has archived them as historical records so EPA does not needlessly repeat the investigations in the future. This policy change is part of the EPA's Brownfields Redevelopment Program to help cities, states, private investors and affected citizens to promote economic redevelopment of unproductive urban sites.

GOVERNMENT RECORDS SEARCHED / DATA CURRENCY TRACKING

Date of Government Version: 11/21/01 Date of Data Arrival at EDR: 12/26/01 Date Made Active at EDR: 02/04/02 Elapsed ASTM days: 40 Database Release Frequency: Quarterly Date of Last EDR Contact: 12/16/01 **CORRACTS:** Corrective Action Report Source: EPA Telephone: 800-424-9346 CORRACTS identifies hazardous waste handlers with RCRA corrective action activity. Date of Government Version: 11/14/01 Date of Data Arrival at EDR: 11/14/01 Date Made Active at EDR: 01/14/02 Elapsed ASTM days: 61 Database Release Frequency: Semi-Annually Date of Last EDR Contact: 03/11/02 RCRIS: Resource Conservation and Recovery Information System Source: EPA/NTIS Telephone: 800-424-9346 Resource Conservation and Recovery Information System. RCRIS includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Date of Government Version: 06/21/00 Date of Data Arrival at EDR: 07/10/00 Date Made Active at EDR: 07/31/00 Elapsed ASTM days: 21 Date of Last EDR Contact: 01/14/02 Database Release Frequency: Varies ERNS: Emergency Response Notification System Source: EPA/NTIS Telephone: 202-260-2342 Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances. Date of Government Version: 08/08/00 Date of Data Arrival at EDR: 08/11/00 Date Made Active at EDR: 09/06/00 Elapsed ASTM days: 26 Date of Last EDR Contact: 02/01/02 Database Release Frequency: Varies FEDERAL ASTM SUPPLEMENTAL RECORDS BRS: Biennial Reporting System Source: EPA/NTIS Telephone: 800-424-9346 The Biennial Reporting System is a national system administered by the EPA that collects data on the generation and management of hazardous waste. BRS captures detailed data from two groups: Large Quantity Generators (LQG) and Treatment, Storage, and Disposal Facilities. Date of Government Version: 12/31/99 Date of Last EDR Contact: 03/18/02 Database Release Frequency: Biennially Date of Next Scheduled EDR Contact: 06/17/02 CONSENT: Superfund (CERCLA) Consent Decrees Source: EPA Regional Offices Telephone: Varies Major legal settlements that establish responsibility and standards for cleanup at NPL (Superfund) sites. Released periodically by United States District Courts after settlement by parties to litigation matters. Date of Government Version: N/A Date of Last EDR Contact: N/A Database Release Frequency: Varies Date of Next Scheduled EDR Contact: N/A

ROD: Records Of Decision

Source: NTIS

Telephone: 703-416-0223

Record of Decision. ROD documents mandate a permanent remedy at an NPL (Superfund) site containing technical and health information to aid in the cleanup.
Data of Covernment Version: 00/20/00	Data of Last EDB Contact: 01/07/02	
Database Release Frequency: Annually	Date of Next Scheduled EDR Contact: 04/08/02	
DELISTED NPL: National Priority List Deletions Source: EPA Telephone: N/A The National Oil and Hazardous Substances Pollution Contingency Pla EPA uses to delete sites from the NPL. In accordance with 40 CFR NPL where no further response is appropriate.	an (NCP) establishes the criteria that the 300.425.(e), sites may be deleted from the	
Date of Government Version: 01/29/02 Database Release Frequency: Quarterly	Date of Last EDR Contact: 02/04/02 Date of Next Scheduled EDR Contact: 05/06/02	
 FINDS: Facility Index System/Facility Identification Initiative Program Summary Report Source: EPA Telephone: N/A Facility Index System. FINDS contains both facility information and 'pointers' to other sources that contain more detail. EDR includes the following FINDS databases in this report: PCS (Permit Compliance System), AIRS (Aerometric Information Retrieval System), DOCKET (Enforcement Docket used to manage and track information on civil judicial enforcement cases for all environmental statutes), FURS (Federal Underground Injection Control), C-DOCKET (Criminal Docket System used to track criminal enforcement actions for all environmental statutes), FFIS (Federal Facilities Information System), STATE (State Environmental Laws and Statutes), and PADS (PCB Activity Data System). 		
Date of Government Version: 10/29/01 Database Release Frequency: Quarterly	Date of Last EDR Contact: 01/07/02 Date of Next Scheduled EDR Contact: 04/08/02	
HMIRS: Hazardous Materials Information Reporting System Source: U.S. Department of Transportation Telephone: 202-366-4526 Hazardous Materials Incident Report System. HMIRS contains hazard Date of Government Version: 09/30/01 Datebase Polesee Erequerer: Appubly	ous material spill incidents reported to DOT. Date of Last EDR Contact: 01/21/02	
Database Release Frequency: Annually Date of Next Scheduled EDR Contact: 04/22/02 MLTS: Material Licensing Tracking System Source: Nuclear Regulatory Commission Telephone: 301-415-7169 MLTS is maintained by the Nuclear Regulatory Commission and contains a list of approximately 8,100 sites which possess or use radioactive materials and which are subject to NRC licensing requirements. To maintain currency, EDR contacts the Agency on a quarterly basis. Date of Government Version: 10/25/01 Date of Last EDR Contact: 01/07/02 Date of Next Scheduled EDR Contact: 04/08/02		
MINES: Mines Master Index File Source: Department of Labor, Mine Safety and Health Administration Telephone: 303-231-5959 Date of Government Version: 12/14/01 Database Release Frequency: Semi-Annually	Date of Last EDR Contact: 01/02/02 Date of Next Scheduled EDR Contact: 04/01/02	
 NPL LIENS: Federal Superfund Liens Source: EPA Telephone: 205-564-4267 Federal Superfund Liens. Under the authority granted the USEPA by the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, the USEPA has the authority to file liens against real property in order to recover remedial action expenditures or when the property owner receives notification of potential liability. USEPA compiles a listing of filed notices of Superfund Liens. 		

Date of Government Version: 10/15/91 Database Release Frequency: No Update Planned	Date of Last EDR Contact: 02/26/02 Date of Next Scheduled EDR Contact: 05/27/02
 PADS: PCB Activity Database System Source: EPA Telephone: 202-260-3936 PCB Activity Database. PADS Identifies generators, transporters, co of PCB's who are required to notify the EPA of such activities. 	ommercial storers and/or brokers and disposers
Date of Government Version: 09/30/01 Database Release Frequency: Annually	Date of Last EDR Contact: 02/12/02 Date of Next Scheduled EDR Contact: 05/13/02
 RAATS: RCRA Administrative Action Tracking System Source: EPA Telephone: 202-564-4104 RCRA Administration Action Tracking System. RAATS contains reconnected pertaining to major violators and includes administrative and civil actions after September 30, 1995, data entry in the RAATS data the database for historical records. It was necessary to terminate made it impossible to continue to update the information contained 	ords based on enforcement actions issued under RCRA actions brought by the EPA. For administration base was discontinued. EPA will retain a copy of RAATS because a decrease in agency resources ed in the database.
Date of Government Version: 04/17/95 Database Release Frequency: No Update Planned	Date of Last EDR Contact: 03/11/02 Date of Next Scheduled EDR Contact: 06/10/02
 TRIS: Toxic Chemical Release Inventory System Source: EPA Telephone: 202-260-1531 Toxic Release Inventory System. TRIS identifies facilities which release land in reportable quantities under SARA Title III Section 313. 	ease toxic chemicals to the air, water and
Date of Government Version: 12/31/99 Database Release Frequency: Annually	Date of Last EDR Contact: 12/26/01 Date of Next Scheduled EDR Contact: 03/25/02
 TSCA: Toxic Substances Control Act Source: EPA Telephone: 202-260-5521 Toxic Substances Control Act. TSCA identifies manufacturers and in TSCA Chemical Substance Inventory list. It includes data on the site. 	mporters of chemical substances included on the production volume of these substances by plant
Date of Government Version: 12/31/98 Database Release Frequency: Every 4 Years	Date of Last EDR Contact: 01/22/02 Date of Next Scheduled EDR Contact: 04/22/02
 FTTS: FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, F Source: EPA/Office of Prevention, Pesticides and Toxic Substance: Telephone: 202-564-2501 FTTS tracks administrative cases and pesticide enforcement actions TSCA and EPCRA (Emergency Planning and Community Right-t Agency on a quarterly basis. 	ungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act) s s and compliance activities related to FIFRA, to-Know Act). To maintain currency, EDR contacts the
Date of Government Version: 01/11/02 Database Release Frequency: Quarterly	Date of Last EDR Contact: 12/26/01 Date of Next Scheduled EDR Contact: 03/25/02
FTTS INSP: FIFRA/ TSCA Tracking System - FIFRA (Federal Insection Source: EPA Telephone: 202-564-2501	cide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act)
Date of Government Version: 01/14/02	Date of Last FDR Contact: 12/26/01

Date of Government Version: 01/14/02 Database Release Frequency: Quarterly Date of Last EDR Contact: 12/26/01 Date of Next Scheduled EDR Contact: 03/25/02

STATE OF CALIFORNIA ASTM STANDARD RECORDS

 AWP: Annual Workplan Sites Source: California Environmental Protection Agency Telephone: 916-323-3400 Known Hazardous Waste Sites. California DTSC's Annual Workplan (AWP), former substance sites targeted for cleanup. 	y BEP, identifies known hazardous
Date of Government Version: 11/08/00	Date of Data Arrival at EDR: 01/31/01
Date Made Active at EDR: 03/02/01	Elapsed ASTM days: 30
Database Release Frequency: Annually	Date of Last EDR Contact: 02/04/02
CAL-SITES: Calsites Database Source: Department of Toxic Substance Control Telephone: 916-323-3400 The Calsites database contains potential or confirmed hazardous substance release EPA reevaluated and significantly reduced the number of sites in the Calsites database	e properties. In 1996, California abase.
Date of Government Version: 10/01/00	Date of Data Arrival at EDR: 10/30/00
Date Made Active at EDR: 11/22/00	Elapsed ASTM days: 23
Database Release Frequency: Quarterly	Date of Last EDR Contact: 01/07/02
 CHMIRS: California Hazardous Material Incident Report System Source: Office of Emergency Services Telephone: 916-845-8400 California Hazardous Material Incident Reporting System. CHMIRS contains information incidents (accidental releases or spills). 	ation on reported hazardous material
Date of Government Version: 12/31/94	Date of Data Arrival at EDR: 03/13/95
Date Made Active at EDR: 04/24/95	Elapsed ASTM days: 42
Database Release Frequency: No Update Planned	Date of Last EDR Contact: 03/01/02
CORTESE: "Cortese" Hazardous Waste & Substances Sites List Source: CAL EPA/Office of Emergency Information Telephone: 916-445-6532 The sites for the list are designated by the State Water Resource Control Board (LU Board (SWF/LS), and the Department of Toxic Substances Control (Cal-Sites).	ST), the Integrated Waste
Date of Government Version: 04/01/01	Date of Data Arrival at EDR: 05/29/01
Date Made Active at EDR: 07/26/01	Elapsed ASTM days: 58
Database Release Frequency: Varies	Date of Last EDR Contact: 01/28/02
NOTIFY 65: Proposition 65 Records Source: State Water Resources Control Board Telephone: 916-445-3846 Proposition 65 Notification Records. NOTIFY 65 contains facility notifications about a drinking water and thereby expose the public to a potential health risk.	any release which could impact
Date of Government Version: 10/21/93	Date of Data Arrival at EDR: 11/01/93
Date Made Active at EDR: 11/19/93	Elapsed ASTM days: 18
Database Release Frequency: No Update Planned	Date of Last EDR Contact: 01/21/02
 TOXIC PITS: Toxic Pits Cleanup Act Sites Source: State Water Resources Control Board Telephone: 916-227-4364 Toxic PITS Cleanup Act Sites. TOXIC PITS identifies sites suspected of containing I has not yet been completed. 	nazardous substances where cleanup
Date of Government Version: 07/01/95	Date of Data Arrival at EDR: 08/30/95
Date Made Active at EDR: 09/26/95	Elapsed ASTM days: 27
Database Release Frequency: No Update Planned	Date of Last EDR Contact: 02/04/02

SWF/LF (SWIS): Solid Waste Information System Source: Integrated Waste Management Board Telephone: 916-341-6320 Active, Closed and Inactive Landfills. SWF/LF records typically contain an inve ntory of solid waste disposal facilities or landfills. These may be active or i nactive facilities or open dumps that failed to meet RCRA Section 4004 criteria for solid waste landfills or disposal sites. Date of Government Version: 12/17/01 Date of Data Arrival at EDR: 12/17/01 Date Made Active at EDR: 01/15/02 Elapsed ASTM days: 29 Database Release Frequency: Quarterly Date of Last EDR Contact: 03/18/02 WMUDS/SWAT: Waste Management Unit Database Source: State Water Resources Control Board Telephone: 916-227-4448 Waste Management Unit Database System. WMUDS is used by the State Water Resources Control Board staff and the Regional Water Quality Control Boards for program tracking and inventory of waste management units. WMUDS is composed of the following databases: Facility Information, Scheduled Inspections Information, Waste Management Unit Information, SWAT Program Information, SWAT Report Summary Information, SWAT Report Summary Data, Chapter 15 (formerly Subchapter 15) Information, Chapter 15 Monitoring Parameters, TPCA Program Information, RCRA Program Information, Closure Information, and Interested Parties Information. Date of Government Version: 04/01/00 Date of Data Arrival at EDR: 04/10/00 Date Made Active at EDR: 05/10/00 Elapsed ASTM days: 30 Database Release Frequency: Quarterly Date of Last EDR Contact: 03/12/02 LUST: Leaking Underground Storage Tank Information System Source: State Water Resources Control Board Telephone: 916-341-5740 Leaking Underground Storage Tank Incident Reports, LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state. Date of Government Version: 01/17/02 Date of Data Arrival at EDR: 01/21/02 Date Made Active at EDR: 02/12/02 Elapsed ASTM days: 22 Database Release Frequency: Quarterly Date of Last EDR Contact: 01/21/02 CA BOND EXP. PLAN: Bond Expenditure Plan Source: Department of Health Services Telephone: 916-255-2118 Department of Health Services developed a site-specific expenditure plan as the basis for an appropriation of Hazardous Substance Cleanup Bond Act funds. It is not updated. Date of Government Version: 01/01/89 Date of Data Arrival at EDR: 07/27/94 Date Made Active at EDR: 08/02/94 Elapsed ASTM days: 6 Date of Last EDR Contact: 05/31/94 Database Release Frequency: No Update Planned CA UST: UST: Active UST Facilities Source: SWRCB Telephone: 916-341-5700 Active UST facilities gathered from the local regulatory agencies Date of Government Version: 01/17/02 Date of Data Arrival at EDR: 01/21/02 Date Made Active at EDR: 02/12/02 Elapsed ASTM days: 22 Date of Last EDR Contact: 01/21/02 Database Release Frequency: Semi-Annually CA FID UST: Facility Inventory Database Source: California Environmental Protection Agency Telephone: 916-445-6532 The Facility Inventory Database (FID) contains a historical listing of active and inactive underground storage tank locations from the State Water Resource Control Board. Refer to local/county source for current data.

Date of Government Version: 10/31/94 Date Made Active at EDR: 09/29/95 Database Release Frequency: No Update Planned

HIST UST: Hazardous Substance Storage Container Database Source: State Water Resources Control Board Telephone: 916-341-5700 The Hazardous Substance Storage Container Database is a historical listing of UST sites. Refer to local/county source for current data.

Date of Government Version: 10/15/90 Date Made Active at EDR: 02/12/91 Database Release Frequency: No Update Planned

STATE OF CALIFORNIA ASTM SUPPLEMENTAL RECORDS

AST: Aboveground Petroleum Storage Tank Facilities Source: State Water Resources Control Board Telephone: 916-227-4382 Registered Aboveground Storage Tanks.

> Date of Government Version: 02/27/02 Database Release Frequency: Quarterly

CLEANERS: Cleaner Facilities

Source: Department of Toxic Substance Control Telephone: 916-225-0873

A list of drycleaner related facilities that have EPA ID numbers. These are facilities with certain SIC codes: power laundries, family and commercial; garment pressing and cleaner's agents; linen supply; coin-operated laundries and cleaning; drycleaning plants, except rugs; carpet and upholster cleaning; industrial launderers; laundry and garment services.

Date of Government Version: 07/27/01 Database Release Frequency: Annually

CA WDS: Waste Discharge System

Source: State Water Resources Control Board Telephone: 916-657-1571 Sites which have been issued waste discharge requirements.

Date of Government Version: 07/19/01 Database Release Frequency: Quarterly

DEED: List of Deed Restrictions

Source: Department of Toxic Substances Control

Telephone: 916-323-3400

The use of recorded land use restrictions is one of the methods the DTSC uses to protect the public from unsafe exposures to hazardous substances and wastes.

Date of Government Version: 02/11/02 Database Release Frequency: Semi-Annually

HAZNET: Hazardous Waste Information System

Source: California Environmental Protection Agency

Telephone: 916-255-1136

Facility and Manifest Data. The data is extracted from the copies of hazardous waste manifests received each year by the DTSC. The annual volume of manifests is typically 700,000 - 1,000,000 annually, representing approximately 350,000 - 500,000 shipments. Data are from the manifests submitted without correction, and therefore many contain some invalid values for data elements such as generator ID, TSD ID, waste category, and disposal method.

Date of Data Arrival at EDR: 09/05/95 Elapsed ASTM days: 24 Date of Last EDR Contact: 12/28/98

Date of Data Arrival at EDR: 01/25/91

Date of Last EDR Contact: 07/26/01

Elapsed ASTM days: 18

Date of Last EDR Contact: 02/04/02 Date of Next Scheduled EDR Contact: 05/06/02

Date of Last EDR Contact: 01/07/02 Date of Next Scheduled EDR Contact: 04/08/02

Date of Last EDR Contact: 03/19/02 Date of Next Scheduled EDR Contact: 06/24/02

Date of Next Scheduled EDR Contact: 04/08/02

Date of Last EDR Contact: 02/19/02

Date of Government Version: 12/31/00 Database Release Frequency: Annually

LOCAL RECORDS

ALAMEDA COUNTY:

Local Oversight Program Listing of UGT Cleanup Sites

Source: Alameda County Environmental Health Services Telephone: 510-567-6700

Date of Government Version: 07/01/01 Database Release Frequency: Semi-Annually

Underground Tanks

Source: Alameda County Environmental Health Services Telephone: 510-567-6700

Date of Government Version: 12/01/00 Database Release Frequency: Semi-Annually

CONTRA COSTA COUNTY:

Site List

Source: Contra Costa Health Services Department Telephone: 925-646-2286 List includes sites from the underground tank, hazardous waste generator and business plan/2185 programs.

Date of Government Version: 09/01/00 Database Release Frequency: Semi-Annually Date of Last EDR Contact: 01/28/02 Date of Next Scheduled EDR Contact: 04/29/02

Date of Next Scheduled EDR Contact: 05/13/02

Date of Last EDR Contact: 02/12/02

Date of Last EDR Contact: 01/28/02 Date of Next Scheduled EDR Contact: 04/29/02

Date of Last EDR Contact: 03/04/02 Date of Next Scheduled EDR Contact: 06/03/02

FRESNO COUNTY:

CUPA Resources List

Source: Dept. of Community Health Telephone: 559-445-3271 Certified Unified Program Agency. CU

Certified Unified Program Agency. CUPA's are responsible for implementing a unified hazardous materials and hazardous waste management regulatory program. The agency provides oversight of businesses that deal with hazardous materials, operate underground storage tanks or aboveground storage tanks.

Date of Government Version: 01/02/02 Database Release Frequency: Semi-Annually

KERN COUNTY:

Underground Storage Tank Sites & Tanks Listing

Source: Kern County Environment Health Services Department Telephone: 661-862-8700 Kern County Sites and Tanks Listing.

Date of Government Version: 12/20/01 Database Release Frequency: Quarterly Date of Last EDR Contact: 03/04/02

Date of Next Scheduled EDR Contact: 05/13/02

Date of Last EDR Contact: 02/12/02

Date of Next Scheduled EDR Contact: 06/03/02

LOS ANGELES COUNTY:

List of Solid Waste Facilities

Source: La County Department of Public Works Telephone: 818-458-5185

Date of Government Version: 11/09/99 Database Release Frequency: Varies

City of El Segundo Underground Storage Tank

Source: City of El Segundo Fire Department Telephone: 310-607-2239

Date of Government Version: 03/01/02 Database Release Frequency: Semi-Annually

City of Long Beach Underground Storage Tank

Source: City of Long Beach Fire Department Telephone: 562-570-2543

Date of Government Version: 10/01/99 Database Release Frequency: Annually

City of Torrance Underground Storage Tank

Source: City of Torrance Fire Department Telephone: 310-618-2973

Date of Government Version: 11/01/01 Database Release Frequency: Semi-Annually

City of Los Angeles Landfills

Source: Engineering & Construction Division Telephone: 213-473-7869

Date of Government Version: 08/31/99 Database Release Frequency: Varies

HMS: Street Number List

Source: Department of Public Works Telephone: 626-458-3517 Industrial Waste and Underground Storage Tank Sites.

Date of Government Version: 11/29/01 Database Release Frequency: Semi-Annually

Site Mitigation List

Source: Community Health Services Telephone: 323-890-7806 Industrial sites that have had some sort of spill or complaint.

Date of Government Version: 01/11/01 Database Release Frequency: Annually

San Gabriel Valley Areas of Concern

Source: EPA Region 9 Telephone: 415-744-2407 San Gabriel Valley areas where VOC contamination is at or above the MCL as designated by region 9 EPA office.

Date of Government Version: 12/31/98 Database Release Frequency: No Update Planned Date of Last EDR Contact: 02/20/02 Date of Next Scheduled EDR Contact: 05/20/02

Date of Last EDR Contact: 02/18/02 Date of Next Scheduled EDR Contact: 05/20/02

Date of Last EDR Contact: 02/25/02 Date of Next Scheduled EDR Contact: 05/27/02

Date of Last EDR Contact: 02/18/02 Date of Next Scheduled EDR Contact: 05/20/02

Date of Last EDR Contact: 02/18/02 Date of Next Scheduled EDR Contact: 05/20/02

Date of Last EDR Contact: 02/18/02 Date of Next Scheduled EDR Contact: 05/20/02

Date of Last EDR Contact: 02/18/02 Date of Next Scheduled EDR Contact: 05/20/02

Date of Last EDR Contact: 06/29/99 Date of Next Scheduled EDR Contact: N/A

MARIN COUNTY:

Underground Storage Tank Sites

Source: Public Works Department Waste Management Telephone: 415-499-6647 Currently permitted USTs in Marin County.

Date of Government Version: 03/05/01 Database Release Frequency: Semi-Annually

NAPA COUNTY:

Sites With Reported Contamination

Source: Napa County Department of Environmental Management Telephone: 707-253-4269

Date of Government Version: 10/01/01 Database Release Frequency: Semi-Annually

Closed and Operating Underground Storage Tank Sites

Source: Napa County Department of Environmental Management Telephone: 707-253-4269

Date of Government Version: 10/01/01 Database Release Frequency: Annually

ORANGE COUNTY:

List of Underground Storage Tank Cleanups

Source: Health Care Agency Telephone: 714-834-3446 Orange County Underground Storage Tank Cleanups (LUST).

Date of Government Version: 11/27/01 Database Release Frequency: Quarterly

List of Underground Storage Tank Facilities

Source: Health Care Agency Telephone: 714-834-3446 Orange County Underground Storage Tank Facilities (UST).

Date of Government Version: 11/27/01 Database Release Frequency: Quarterly

List of Industrial Site Cleanups

Source: Health Care Agency Telephone: 714-834-3446 Petroleum and non-petroleum spills.

Date of Government Version: 10/24/00 Database Release Frequency: Annually

PLACER COUNTY:

Master List of Facilities

Source: Placer County Health and Human Services Telephone: 530-889-7312 List includes aboveground tanks, underground tanks and cleanup sites. Date of Last EDR Contact: 02/04/02 Date of Next Scheduled EDR Contact: 05/06/02

Date of Last EDR Contact: 01/02/02 Date of Next Scheduled EDR Contact: 04/01/02

Date of Last EDR Contact: 01/02/02 Date of Next Scheduled EDR Contact: 04/01/02

Date of Last EDR Contact: 03/12/02 Date of Next Scheduled EDR Contact: 06/10/02

Date of Last EDR Contact: 03/12/02 Date of Next Scheduled EDR Contact: 06/10/02

Date of Last EDR Contact: 03/12/02 Date of Next Scheduled EDR Contact: 06/10/02

Date of Government Version: 01/31/02 Database Release Frequency: Semi-Annually

RIVERSIDE COUNTY:

Listing of Underground Tank Cleanup Sites

Source: Department of Public Health Telephone: 909-358-5055 Riverside County Underground Storage Tank Cleanup Sites (LUST).

Date of Government Version: 09/05/01 Database Release Frequency: Quarterly

Underground Storage Tank Tank List

Source: Health Services Agency Telephone: 909-358-5055

Date of Government Version: 08/01/01 Database Release Frequency: Quarterly

SACRAMENTO COUNTY:

CS - Contaminated Sites

Source: Sacramento County Environmental Management Telephone: 916-875-8406

Date of Government Version: 01/15/02 Database Release Frequency: Quarterly

ML - Regulatory Compliance Master List

Source: Sacramento County Environmental Management Telephone: 916-875-8406 Any business that has hazardous materials on site - hazardous material storage sites, underground storage tanks, waste generators.

Date of Government Version: 11/21/01 Database Release Frequency: Quarterly

SAN BERNARDINO COUNTY:

Hazardous Material Permits

Source: San Bernardino County Fire Department Hazardous Materials Division

Telephone: 909-387-3041

This listing includes underground storage tanks, medical waste handlers/generators, hazardous materials handlers, hazardous waste generators, and waste oil generators/handlers.

Date of Government Version: 01/02/02 Database Release Frequency: Quarterly

SAN DIEGO COUNTY:

Solid Waste Facilities

Source: Department of Health Services Telephone: 619-338-2209 San Diego County Solid Waste Facilities. Date of Last EDR Contact: 01/02/02 Date of Next Scheduled EDR Contact: 03/25/02

Date of Last EDR Contact: 01/21/02 Date of Next Scheduled EDR Contact: 04/22/02

Date of Last EDR Contact: 01/21/02 Date of Next Scheduled EDR Contact: 04/22/02

Date of Last EDR Contact: 02/04/02 Date of Next Scheduled EDR Contact: 05/06/02

Date of Last EDR Contact: 02/04/02 Date of Next Scheduled EDR Contact: 05/06/02

Date of Last EDR Contact: 03/12/02 Date of Next Scheduled EDR Contact: 06/10/02

Date of Government Version: 08/01/00 Database Release Frequency: Varies

Hazardous Materials Management Division Database

Source: Hazardous Materials Management Division

Telephone: 619-338-2268

The database includes: HE58 - This report contains the business name, site address, business phone number, establishment 'H' permit number, type of permit, and the business status. HE17 - In addition to providing the same information provided in the HE58 listing, HE17 provides inspection dates, violations received by the establishment, hazardous waste generated, the quantity, method of storage, treatment/disposal of waste and the hauler, and information on underground storage tanks. Unauthorized Release List - Includes a summary of environmental contamination cases in San Diego County (underground tank cases, non-tank cases, groundwater contamination, and soil contamination are included.)

Date of Government Version: 12/25/01 Database Release Frequency: Quarterly

SAN FRANCISCO COUNTY:

Local Oversite Facilities

Source: Department Of Public Health San Francisco County Telephone: 415-252-3920

Date of Government Version: 03/01/02 Database Release Frequency: Quarterly

Underground Storage Tank Information

Source: Department of Public Health Telephone: 415-252-3920

Date of Government Version: 12/01/01 Database Release Frequency: Quarterly

SAN MATEO COUNTY:

Fuel Leak List

Source: San Mateo County Environmental Health Services Division Telephone: 650-363-1921

Date of Government Version: 12/06/01 Database Release Frequency: Semi-Annually

Business Inventory

Source: San Mateo County Environmental Health Services Division Telephone: 650-363-1921 List includes Hazardous Materials Business Plan, bazardous waste gene

List includes Hazardous Materials Business Plan, hazardous waste generators, and underground storage tanks.

Date of Government Version: 05/15/01 Database Release Frequency: Annually

SANTA CLARA COUNTY:

Fuel Leak Site Activity Report

Source: Santa Clara Valley Water District Telephone: 408-265-2600 Date of Last EDR Contact: 02/25/02 Date of Next Scheduled EDR Contact: 05/27/02

Date of Next Scheduled EDR Contact: 04/08/02

Date of Last EDR Contact: 01/07/02

Date of Last EDR Contact: 03/12/02 Date of Next Scheduled EDR Contact: 06/10/02

Date of Last EDR Contact: 03/12/02 Date of Next Scheduled EDR Contact: 06/10/02

Date of Last EDR Contact: 01/28/02 Date of Next Scheduled EDR Contact: 04/29/02

Date of Last EDR Contact: 01/15/02 Date of Next Scheduled EDR Contact: 04/15/02

Date of Government Version: 01/03/02 Database Release Frequency: Semi-Annually

Hazardous Material Facilities

Source: City of San Jose Fire Department Telephone: 408-277-4659

Date of Government Version: 06/13/00 Database Release Frequency: Annually

SOLANO COUNTY:

Leaking Underground Storage Tanks

Source: Solano County Department of Environmental Management Telephone: 707-421-6770

Date of Government Version: 01/02/02 Database Release Frequency: Quarterly

Underground Storage Tanks

Source: Solano County Department of Environmental Management Telephone: 707-421-6770

Date of Government Version: 01/02/02 Database Release Frequency: Quarterly

SONOMA COUNTY:

Leaking Underground Storage Tank Sites

Source: Department of Health Services Telephone: 707-565-6565

Date of Government Version: 11/29/01 Database Release Frequency: Quarterly

SUTTER COUNTY:

Underground Storage Tanks

Source: Sutter County Department of Agriculture Telephone: 530-822-7500

Date of Government Version: 07/01/01 Database Release Frequency: Semi-Annually

VENTURA COUNTY:

Inventory of Illegal Abandoned and Inactive Sites

Source: Environmental Health Division Telephone: 805-654-2813 Ventura County Inventory of Closed, Illegal Abandoned, and Inactive Sites.

Date of Government Version: 04/02/01 Database Release Frequency: Annually

Listing of Underground Tank Cleanup Sites

Source: Environmental Health Division Telephone: 805-654-2813 Ventura County Underground Storage Tank Cleanup Sites (LUST). Date of Last EDR Contact: 01/04/02 Date of Next Scheduled EDR Contact: 04/01/02

Date of Last EDR Contact: 03/12/02 Date of Next Scheduled EDR Contact: 06/10/02

Date of Last EDR Contact: 03/18/02 Date of Next Scheduled EDR Contact: 06/17/02

Date of Last EDR Contact: 03/18/02 Date of Next Scheduled EDR Contact: 06/17/02

Date of Last EDR Contact: 01/29/02 Date of Next Scheduled EDR Contact: 04/29/02

Date of Last EDR Contact: 01/07/02 Date of Next Scheduled EDR Contact: 04/08/02

Date of Last EDR Contact: 02/25/02 Date of Next Scheduled EDR Contact: 05/27/02

Date of Government Version: 05/24/01 Database Release Frequency: Quarterly	Date of Last EDR Contact: 03/18/02 Date of Next Scheduled EDR Contact: 06/17/02	
Underground Tank Closed Sites List Source: Environmental Health Division Telephone: 805-654-2813		
Ventura County Operating Underground Storage Tank Sites (UST)/Underground Tank Closed Sites List.		
Date of Government Version: 05/24/01 Database Release Frequency: Quarterly	Date of Last EDR Contact: 01/15/02 Date of Next Scheduled EDR Contact: 04/15/02	
 Business Plan, Hazardous Waste Producers, and Operating Underground Tanks Source: Ventura County Environmental Health Division Telephone: 805-654-2813 The BWT list indicates by site address whether the Environmental Health Division has Business Plan (B), Waste Producer (W), and/or Underground Tank (T) information. 		
Date of Government Version: 11/06/01 Database Release Frequency: Quarterly	Date of Last EDR Contact: 03/18/02 Date of Next Scheduled EDR Contact: 06/17/02	
YOLO COUNTY:		
Underground Storage Tank Comprehensive Facility Report Source: Yolo County Department of Health Telephone: 530-666-8646		
Date of Government Version: 11/20/01 Database Release Frequency: Annually	Date of Last EDR Contact: 01/21/02 Date of Next Scheduled EDR Contact: 04/22/02	
California Regional Water Quality Control Board (RWQCB) LUST Records		
LUST REG 1: Active Toxic Site Investigation Source: California Regional Water Quality Control Board North Coast (1) Telephone: 707-576-2220 Del Norte, Humboldt, Lake, Mendocino, Modoc, Siskiyou, Sonoma, Trinity counties. please refer to the State Water Resources Control Board's LUST database.	For more current information,	
Date of Government Version: 02/01/01 Database Release Frequency: No Update Planned	Date of Last EDR Contact: 02/25/02 Date of Next Scheduled EDR Contact: 05/27/02	
LUST REG 2: Fuel Leak List Source: California Regional Water Quality Control Board San Francisco Bay Region (2) Telephone: 510-286-0457		
Date of Government Version: 12/01/01 Database Release Frequency: Quarterly	Date of Last EDR Contact: 01/28/02 Date of Next Scheduled EDR Contact: 04/15/02	
LUST REG 3: Leaking Underground Storage Tank Database Source: California Regional Water Quality Control Board Central Coast Region (3) Telephone: 805-549-3147		
Date of Government Version: 11/19/01 Database Release Frequency: Quarterly	Date of Last EDR Contact: 02/18/02 Date of Next Scheduled EDR Contact: 05/20/02	
 LUST REG 4: Underground Storage Tank Leak List Source: California Regional Water Quality Control Board Los Angeles Region (4) Telephone: 213-266-6600 Los Angeles, Ventura counties. For more current information, please refer to the State Water Resources Control Board's LUST database. 		

Date of Government Version: 08/09/01 Database Release Frequency: No Update Planned	Date of Last EDR Contact: 01/02/02 Date of Next Scheduled EDR Contact: 04/01/02
LUST REG 5: Leaking Underground Storage Tank Database Source: California Regional Water Quality Control Board Central Valley Region (5) Telephone: 916-255-3125	
Date of Government Version: 01/02/02 Database Release Frequency: Quarterly	Date of Last EDR Contact: 01/07/02 Date of Next Scheduled EDR Contact: 04/08/02
LUST REG 6L: Leaking Underground Storage Tank Case Listing Source: California Regional Water Quality Control Board Lahontan Region (6) Telephone: 916-542-5424	
Date of Government Version: 01/02/02 Database Release Frequency: Quarterly	Date of Last EDR Contact: 01/07/02 Date of Next Scheduled EDR Contact: 04/08/02
LUST REG 6V: Leaking Underground Storage Tank Case Listing Source: California Regional Water Quality Control Board Victorville Branch Office (6) Telephone: 760-346-7491	
Date of Government Version: 01/02/02 Database Release Frequency: Quarterly	Date of Last EDR Contact: 01/07/02 Date of Next Scheduled EDR Contact: 04/08/02
LUST REG 7: Leaking Underground Storage Tank Case Listing Source: California Regional Water Quality Control Board Colorado River Basin Region (7) Telephone: 760-346-7491	
Date of Government Version: 01/23/02 Database Release Frequency: Semi-Annually	Date of Last EDR Contact: 01/02/02 Date of Next Scheduled EDR Contact: 04/01/02
LUST REG 8: Leaking Underground Storage Tanks Source: California Regional Water Quality Control Board Santa Ana Region (8) Telephone: 909-782-4498 California Regional Water Quality Control Board Santa Ana Region (8). For more current information, please refer to the State Water Resources Control Board's LUST database.	
Date of Government Version: 07/23/01 Database Release Frequency: No Update Planned	Date of Last EDR Contact: 02/12/02 Date of Next Scheduled EDR Contact: 05/13/02
 LUST REG 9: Leaking Underground Storage Tank Report Source: California Regional Water Quality Control Board San Diego Region (9) Telephone: 858-467-2980 Orange, Riverside, San Diego counties. For more current information, please refer to Control Board's LUST database. 	o the State Water Resources
Date of Government Version: 03/01/01 Database Release Frequency: No Update Planned	Date of Last EDR Contact: 01/21/02 Date of Next Scheduled EDR Contact: 04/22/02
California Regional Water Quality Control Board (RWQCB) SLIC Records	
SLIC REG 1: Active Toxic Site Investigations Source: California Regional Water Quality Control Board, North Coast Region (1) Telephone: 707-576-2220	
Date of Government Version: 02/01/01 Database Release Frequency: Semi-Annually	Date of Last EDR Contact: 03/01/02 Date of Next Scheduled EDR Contact: 05/27/02

SLIC REG 2: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: Regional Water Quality Control Board San Francisco Bay Region (2) Telephone: 510-286-0457 Any contaminated site that impacts groundwater or has the potential to impact groundwater.

Date of Government Version: 12/01/01	Date of Last EDR Contact: 01/28/02
Database Release Frequency: Quarterly	Date of Next Scheduled EDR Contact: 04/15/02
 SLIC REG 3: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: California Regional Water Quality Control Board Central Coast Region (3) Telephone: 805-549-3147 Any contaminated site that impacts groundwater or has the potential to impact groundwater 	ndwater.
Date of Government Version: 02/19/02	Date of Last EDR Contact: 02/18/02
Database Release Frequency: Semi-Annually	Date of Next Scheduled EDR Contact: 05/20/02
 SLIC REG 4: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: Region Water Quality Control Board Los Angeles Region (4) Telephone: 213-576-6600 Any contaminated site that impacts groundwater or has the potential to impact groundwater 	ndwater.
Date of Government Version: 09/13/01	Date of Last EDR Contact: 01/28/02
Database Release Frequency: Quarterly	Date of Next Scheduled EDR Contact: 04/29/02
 SLIC REG 5: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: Regional Water Quality Control Board Central Valley Region (5) Telephone: 916-855-3075 Unregulated sites that impact groundwater or have the potential to impact groundwater 	ater.
Date of Government Version: 01/02/02	Date of Last EDR Contact: 01/07/02
Database Release Frequency: Semi-Annually	Date of Next Scheduled EDR Contact: 04/08/02
SLIC REG 6V: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: Regional Water Quality Control Board, Victorville Branch Telephone: 619-241-6583	
Date of Government Version: 07/19/01	Date of Last EDR Contact: 01/07/02
Database Release Frequency: Semi-Annually	Date of Next Scheduled EDR Contact: 04/08/02
 SLIC REG 8: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: California Region Water Quality Control Board Santa Ana Region (8) Telephone: 909-782-3298 	
Date of Government Version: 07/31/01	Date of Last EDR Contact: 01/08/02
Database Release Frequency: Semi-Annually	Date of Next Scheduled EDR Contact: 04/08/02
 SLIC REG 9: Spills, Leaks, Investigation & Cleanup Cost Recovery Listing Source: California Regional Water Quality Control Board San Diego Region (9) Telephone: 858-467-2980 	
Date of Government Version: 03/01/02	Date of Last EDR Contact: 03/04/02
Database Release Frequency: Annually	Date of Next Scheduled EDR Contact: 06/03/02

EDR PROPRIETARY HISTORICAL DATABASES

Former Manufactured Gas (Coal Gas) Sites: The existence and location of Coal Gas sites is provided exclusively to EDR by Real Property Scan, Inc. ©Copyright 1993 Real Property Scan, Inc. For a technical description of the types of hazards which may be found at such sites, contact your EDR customer service representative.

Disclaimer Provided by Real Property Scan, Inc.

The information contained in this report has predominantly been obtained from publicly available sources produced by entities other than Real Property Scan. While reasonable steps have been taken to insure the accuracy of this report, Real Property Scan does not guarantee the accuracy of this report. Any liability on the part of Real Property Scan is strictly limited to a refund of the amount paid. No claim is made for the actual existence of toxins at any site. This report does not constitute a legal opinion.

OTHER DATABASE(S)

Depending on the geographic area covered by this report, the data provided in these specialty databases may or may not be complete. For example, the existence of wetlands information data in a specific report does not mean that all wetlands in the area covered by the report are included. Moreover, the absence of any reported wetlands information does not necessarily mean that wetlands do not exist in the area covered by the report.

Oil/Gas Pipelines/Electrical Transmission Lines: This data was obtained by EDR from the USGS in 1994. It is referred to by USGS as GeoData Digital Line Graphs from 1:100,000-Scale Maps. It was extracted from the transportation category including some oil, but primarily gas pipelines and electrical transmission lines.

Sensitive Receptors: There are individuals deemed sensitive receptors due to their fragile immune systems and special sensitivity to environmental discharges. These sensitive receptors typically include the elderly, the sick, and children. While the location of all sensitive receptors cannot be determined, EDR indicates those buildings and facilities - schools, daycares, hospitals, medical centers, and nursing homes - where individuals who are sensitive receptors are likely to be located.

Flood Zone Data: This data, available in select counties across the country, was obtained by EDR in 1999 from the Federal Emergency Management Agency (FEMA). Data depicts 100-year and 500-year flood zones as defined by FEMA.

NWI: National Wetlands Inventory. This data, available in select counties across the country, was obtained by EDR in 1999 from the U.S. Fish and Wildlife Service.

Thank you for your business. Please contact EDR at 1-800-352-0050 with any questions or comments.

Disclaimer

This Report contains information obtained from a variety of public sources and EDR makes no representation or warranty regarding the accuracy, reliability, quality, or completeness of said information or the information contained in this report. The customer shall assume full responsibility for the use of this report.

No warranty of merchantability or of fitness for a particular purpose, expressed or implied, shall apply and EDR specifically disclaims the making of such warranties. In no event shall EDR be liable to anyone for special, incidental, consequential or exemplary damages.