THE MACNEAL-SCHWENDLER CORPORATION

EC-24

STRUCTURAL ANALYSIS OF MATILIJA DAM

for

Bechtel Corporation

STRUCTURAL ANALYSIS OF MATILIJA DAM

for

Bechtel Corporation

MSC PROJECT REPORT: EC-24 DATE: March 1965 PREPARED BY: bert G. Schwendler

Edwin J /Gooze

 $\langle \rangle$

The MacNeal-Schwendler Corporation 2556 Mission Street San Marino, California

TABLE OF CONTENTS

		i
1.0	INTRODUCTION	
2.0	DESCRIPTION OF ANALYTICAL MODEL	
2.1	GEOMETRY	
2.2	STRUCTURAL IDEALIZATION	
2.3	TREATMENT OF THE FOUNDATION	
2.4	TREATMENT OF THE SLIP PLANE	
2.5	TREATMENT OF EXISTING CRACKS AND CONCRETE DETERIORATION	
	IN THE DAM	
3.0	PHASE I	
3.1	LOADING CONDITIONS CONSIDERED	
3.2	RESULTS OF PHASE I 8	
3.3	REVIEW OF PHASE I RESULTS	
4.0	PHASE II	
4.1	LOADING CONDITIONS CONSIDERED	
4.2	RESULTS OF PHASE II	
4.3	REVIEW OF PHASE II RESULTS	
5.0	CONCLUSIONS AND RECOMMENDATIONS	
APPEN	NDIX A. PHASE I STRESS RESULTS	
APPEN	NDIX B. PHASE I DEFLECTION RESULTS	
APPEN	NDIX C. PHASE II STRESS RESULTS	
APPEN	IDIX D. PHASE II DEFLECTION RESULTS	
	DIX E. PHASE II PRINCIPAL STRESS RESULTS	

Page

TABLES

					0.5	0														Page
2.1	Geometry of Arches	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	16
2.2	Physical Properties	2	•	•	•	•		•	•	•					•	•	٠	•		17
3.1	Phase I Load Conditions	•		•	•	•					•	•	•				0			18
3.2	Deflection Results of Phase	Ι	•	•	•	•	۲	•	•	•	٠	•	•	•	•	۲	•	•	•	19
4.1	Phase II Load Conditions .	в			•				٠	•	•	•			•	٠	•	•	•	20

LIST OF ILLUSTRATIONS

Fig.	<u>No.</u>	age
2.1	Geometry of Typical Arch	21
2.2	General Arrangement and Geometric Characteristics of Matilija Dam	22
2.3	Arch and Cantilever Centerline Locations View	23
2.4	Lumped Element Identification	24
2.5	Modulus of Elasticity of Analytical Model	25
2.6	Arch Thickness Reduction at Construction Joints	26
3.1	Temperature Variation on Given Dates From Grouting Temperature	27
3.2	Assumed Total Chemical Expansion for Arches and Cantilevers for Matilija Dam	28
4.1	Incremental Increase in Hydrostatic Pressure Due to Earthquake	29
A-1	Load Condition A, Water Load Only, Elevation 1103	31
A-2	Load Condition B, Water Load Only, Elevation 1069	32
A-3	Load Condition B + E, Water Elevation 1069, Silt Elevation	33
A-4	Load Condition G, Thermal Contraction Only, November 1957	34
A-5	Load Condition H, Thermal Contraction Only, October 1964	35
A-6	Load Condition J, Chemical Expansion: 0.1% Elevation 1125, 0% Elevation 960	36
A-7	Load Condition K, Chemical Expansion: 0.1% Above Elevation 1062.5	37
A-8	Load Condition L, Chemical Expansion: 0.1% of Weakened Section Above Elevation 1095	38
A-9	Load Condition M, Translation of the Left Abutment	39

-iv-

LIST OF ILLUSTRATIONS (Cont.)

Fig. N	0.	Page
B– 1	Load Condition A, Water Load Only, Elevation 1103	.41
B-2	Load Condition B, Water Load Only, Elevation 1069	42
B-3	Load Condition B + E, Water Elevation 1069, Silt Elevation 1037	43
B-4	Load Condition G, Thermal Contraction Only, November 1957	44
B-5	Load Condition H, Thermal Contraction Only, October 1964	45
.B-6	Load Condition J, Chemical Expansion: 0.1% Elevation 1125 0% Elevation 960	46
B-7	Load Condition K, Chemical Expansion: 0.1% Above Elevation 1062.5	47
B-8	Load Condition L, Chemical Expansion: 0.1% of Weakened Section Above Elevation 1095	48
B-9	Load Condition M, Translation of the Left Abutment	49
C-1	Load Condition R, Water Elevation 1069	51
C-2	Load Condition S, Water Elevation 1125	52
C-3	Load Condition T, Water Elevation 1138	53
Ċ-4	Load Condition U, Earthquake Condition,Water Elevation 1125,. Silt Elevation 1037	54
D-1	Load Condition R, Water Elevation 1069	56
D-2	Load Condition S, Water Elevation 1125	57
D-3	Load Condition T, Water Elevation 1138	58
D-4	Load Condition U, Earthquake Condition, Water Elevation 1125, Silt Elevation 1037	59

STRUCTURAL ANALYSIS OF MATILIJA DAM

1.0 INTRODUCTION

This report contains a description of the structural analysis of Matilija Dam made for the Bechtel Corporation by The MacNeal-Schwendler Corporation. The analysis was made using an IBM 7094 digital computer and the digital computer program SADSAM which was developed by The MacNeal-Schwendler Corporation.

This analysis of Matilija Dam, which was constructed about 17 years ago, was performed because the dam has noticeably suffered from concrete deterioration and abutment motion. The analytical task involved was somewhat different from the more conventional evaluation of a new design. The first task, accomplished in Phase I of this analysis, was the determination of the currently existing state of the dam with respect to foundation motion and chemical expansion of the concrete.

Using the approximation of existing conditions found in Phase I the analysis proceeded to the prediction of the stress distributions which will result from the application of critical loading conditions in the future. This task was accomplished in Phase II of the analysis.

2.0 DESCRIPTION OF ANALYTICAL MODEL

The actual dam structure of Fig. 2.2 was represented in this study by an analytical model of the dam. This analytical model is described in Sections 2.1 through 2.5.

2.1 GEOMETRY

The analytical model of the dam was considered to have a central surface, to which the internal forces and moments are referenced, defined by circular arcs at the arch center locations of Table 2.1. The radii and centers of these circular arcs are shown in Table 2.1. The dam thickness of the analytical model is defined by circular intrados and extrados faces which result in abutment and crown thicknesses for each arch location which are identical to the actual dam.

Figure 2.1 shows the geometry used for a typical arch elevation and Table 2.1 presents the numerical data for the arches used.

The height of the top arch (arch B of Fig. 2.3) was varied along its length to account for the variation in crest elevation.

2.2 STRUCTURAL IDEALIZATION

Figure 2.2 presents the general arrangement and geometric characteristics of Matilija Dam. The analysis of the dam was accomplished by replacing the continuous structure by a lumped parameter system consisting of horizontal and vertical beams as well as torque boxes and shear panels. In particular, the structural idealization resulted in a grid system containing 5 horizontal arches and 12 vertical cantilevers. Figure 2.3 shows the grid system projected onto a reference cylinder. The horizontal lines represent the center lines of the arch elements and the vertical lines represent the center lines of the cantilevers are treated as shear panels for both membrane and twisting shear. The horizontal arch elements are idealized as elastic elements that react horizontal thrust, radial shear and bending about a vertical axis. Similarly, the cantilever elements react vertical thrust, radial shear and bending about a horizontal axis. Coupling of the vertical and tangential coordinates exists due to the membrane shear elastic elements. The rotational coordinates of the arches are coupled together by twisting shear elastic elements.

The horizontal curved arches, as idealized, consist of a series of curved beam segments between cantilevers. The curvature of the cantilevers was considered negligible and was not represented in the structural idealization. The cantilever sections were straight beam segments between arches.

The loads acting on the dam structure are approximated by a set of concentrated loads applied to the arch-cantilever intersections. The effects of temperature and chemical expansion are introduced by the application of the effective strains. The various lumped elements used in idealizing the continuous structure are indicated in Fig. 2.4. Table 2.2 lists the physical properties of the structure used in the analysis.

In the analysis of the dam the idealized structure described above was replaced by an analogous electrical network. The solution was then accomplished through the use of a digital computer program (SADSAM) developed by The MacNeal-Schwendler Corporation. The interested reader will find references 1 and 2 useful in understanding the electrical analogy technique of analyzing structural systems.

-3-

2.3 TREATMENT OF THE FOUNDATION

The continuous foundation was replaced by a series of lumped flexibilities. These flexibilities are located at the intersections of the arch and/or cantilever with the abutment. The "equivalent depth" of foundation rock used in determination of the lumped flexibilities was assumed to be 2.5 times the abutment thickness for resisting thrust and shear loading and 0.5 times the abutment thickness for resisting twisting and bending loading. Derivation of the effective foundation flexibility was based on original work set forth in Ref. 3 and has been used in MSC in the analysis of other arch dams.

The values of foundation modulus used were provided by Bechtel Corporation. Referring to Fig. 2.3, the foundation at the left abutment defined by the section from 2A to 10K had a modulus of 0.75 x 10^6 psi. The foundation at the right abutment defined by the section from 12K to 24A had a modulus of 1.0 x 10^6 psi.

2.4 TREATMENT OF THE SLIP PLANE

An important structural feature of Matilija Dam is a slip plane located below arch J at elevation 960. It was assumed, in this analysis, that only vertical thrust and cantilever bending loads are carried across the slip plane. The slip plane was assumed incapable of carrying any shear load.

-4-

2.5 TREATMENT OF EXISTING CRACKS AND CONCRETE DETERIORATION IN THE DAM

The cracking and concrete deterioration simulated in the analytical model were as follows:

- a.) Core sample tests and sonoscoping have shown that the modulus of elasticity of the concrete varies in the dam. The modulus of elasticity of the analytical model is shown in Fig. 2.5.
- b.) A large horizontal crack exists at approximately elevation 1115 between stations 0+90 and 1+88 which extends through the arch. It was assumed, in this analysis, that the concrete above this crack (the cross-hatched area of Fig. 2.5) is unable to carry load and was omitted from the analytical model.
- c.) The vertical construction joints of the dam have separated at the faces and have thereby locally reduced the cross-sectional areas of the arches. This reduced thickness has a negligible effect on the arch thrust flexibility but does have a small effect on the arch bending flexibility. The arch bending flexibility of the analytical model considered the arch blocks, between construction joints to have the geometric shape shown in Fig. 2.6.

3.0 PHASE I

Since the building of Matilija Dam movements of the structure and abutments have been observed. Investigation of the cause of these movements have indicated internal expansion due to alkali-aggregate reaction and inelastic abutment deflection. Phase I was devoted to studying the deflection of the dam under various loading conditions in an effort to define a chemical expansion distribution and a type of foundation movement which, when included in the analysis, would approximate the observed deflections of the dam.

3.1 LOADING CONDITIONS CONSIDERED

Four types of load were considered in Phase I. In general these load conditions are referred as

1.) Water load

2.) Silt load

3.) Unrestrained thermal contraction

4.) Unrestrained chemical expansion

The hydrostatic pressure was considered to act normal to the inclined face of the dam. The resultant force was resolved into orthogonal components giving a radial and vertical load at the arch-cantilever intersections. The silt load was handled in an identical manner. The density of water containing silt was assumed to be 1.5 times the density of water alone. In general, a triangular distribution of hydrostatic pressure was used, however, in the event that the reservoir surface exceeded a local crest elevation, a trapezoidal hydrostatic distribution was considered appropriate in the region.

Figure 3.1 presents the temperature distributions used in the analysis. Chemical expansion loads were handled in an identical manner to thermal loads, i.e., where a change in physical dimension due to a temperature change is given as

$$(\Delta u)_{\text{thermal}} = (\gamma \Delta t) \mathcal{L}$$

where

 γ = coefficient of thermal expansion

and

100 x $\gamma \Delta t$ = % change in physical dimension

a change in physical dimension due to chemical expansion is given as

$$(\triangle u)_{\text{chem.}} = \frac{\text{Factor}}{100} \times \ell$$

where

Table 3.1 tabulates the load conditions considered in Phase I.

-7-

3.2 RESULTS OF PHASE I

Deflections of the dam were observed at the following locations:

Plate 5	Station	0 +	00	a.	Elevation	1138
Plate 6	Station	3 +	29.7		Elevation	1138
Plate 7	Station	6 +	00		Elevation	1138
Plate 9	Station	4 +	53		Elevation	960
Plate 10	Station	3 +	73		Elevation	960
Plate 11	Station	2 +	91	5.9	Elevation	960

Deflections calculated in the analysis (shown in Appendix B) are at elevations and stations other than those above. The calculated deflections have been linearly extrapolated to the above plate locations and are shown in Table 3.2.

Appendices A and B contain the stress distribution and deflection results respectively for the loading conditions of Phase I.

3.3 REVIEW OF PHASE I RESULTS

The deflection and stress results, shown in Appendices A and B, of the individual loading conditions of Phase I may be superimposed to yield the results of a combined loading condition. At the conclusion of Phase I an attempt was made, through the superposition of analytical results, to duplicate the deflections of the dam measured in November 1957 and in October 1964 with emphasis on the latter date. Less information is available concerning the condition of the dam in 1957, but it is certain that relatively little chemical expansion had taken place prior to this time and that appreciable foundation settlement had already occurred.

-8-

The load combination found to best fit measured deflections, known conditions and assumed reasonable concrete conditions in October 1964 included:

- a.) Load condition B + E; the water and silt conditions known to exist.
- b.) Load condition H; the temperature condition for October 1964
- c.) Load condition M; the translation of the left abutment which, at least, closely duplicates the inelastic deflection at the crest.
- d.) 30% of load condition K; thereby applying a chemical expansion of 0.03% above elevation 1062.5
- e.) 30% of load condition L; thereby applying an additional 0.03% chemical expansion to the weakened area of the top arch.
- f.) 5% of load condition J; thereby applying an additional chemical expansion to the dam varying linearly from 0.005% at elevation 1125 to 0 at elevation 960.

Table 3.2 shows the deflections resulting from the above load superposition in the column labeled "Calc Oct 1964". The corresponding measured deflections are listed in the column labeled "Meas Oct 1964".

All radial deflections and the tangential deflections near the left abutment (at plates 5 and 11) show rather close agreement between the analytical results and measured data. The reliability of tangential deflection measurements at all plates, other than 11, is in doubt and little emphasis was placed on deflection correlation at these coordinates.

-9-

The last two columns of Table 3.2 present the calculated and corresponding deflections measured in November 1957. The superposition of loads used in obtaining these calculated deflections includes load condition A, the water load, load condition G, the temperature condition for November 1957, and load condition M, the inelastic foundation movement.

The correlation between measured and calculated deflection is not as excellent in this case as it was in the 1964 comparison, however, it is considered to be satisfactory considering the lack of knowledge concerning the condition of the dam in 1957. The differences between calculated and measured 1957 deflections are probably a result of:

- a.) The dam being represented in a "weakened" condition duplicating 1964 Observations and modulus of elasticity measurements. The actual dam was probably stiffer in 1957 than it is today.
- b.) Some chemical expansion that may have taken place prior to the 1957 measurements and is not included in this analysis.

4.0 PHASE II

The stresses and deflections of the dam under design loading conditions, which include the chemical expansion and foundation motion defined by Phase I, were predicted in Phase II.

4.1 LOADING CONDITIONS CONSIDERED

For all load cases considered in Phase II thermal contractions due to "maximum temperature drop" as defined in Fig. 3.1 were used.

Earthquake loads were introduced into the analysis in two ways. First, an increase in hydrostatic loading was incorporated according to the plot of Fig. 4.1. Figure 4.1 gives the incremental increase in hydrostatic pressure (including silt). Therefore the resultant earthquake water load is given as

$(F)_{Earth-} = (1 + K) F_{water}$ quake + silt

In addition to the water loads an earthquake inertia loading caused by acceleration of the structure itself at an acceleration level of 0.1 g was included. The inertia loading was assumed to act downstream parallel to the axis of the dam.

Dead loads were assumed to be transmitted straight downward to the foundation and not to be diffused toward the walls of the canyon by shearing action. In treating the dead loads, both the cantilever thrust and the cantilever bending stresses were included.

-11-

Table 4.1 summarizes the loads conditions considered in Phase \square .

4.2 RESULTS OF PHASE II

Stress results including the effects of dead load are presented in Appendix C. The corresponding deflections are given in Appendix D. Appendix E contains the principal stress component for both the intrados and extrados. The principal stress components are tabulated for each arch-cantilever intersection for Cases R, S, T and U as defined in Table 4.1. Also in the tabulation are the horizontal and vertical stresses and the shear stresses on which the principal stresses are based. The terms used in the tabulation of principal stresses are defined below

SMAX = Maximum stress (+ compression)

SMIN = minimum stress (+ compression)

Theta = Angle defining orientation of the maximum principal stress

(+ counter-clockwise from horizontal when looking upstream)

SX = Horizontal stress (+ compression)

SY = Vertical stress (+ compression)

TAU = Shearing stress (+ sense shown on the sheets of Appendices A and C)

The location code used to identify the stress data may be found on Fig. 2.3.

4.3 REVIEW OF PHASE II RESULTS

The results of Phase II generally show that:

- a.) Areas of the dam known to be weak are in a rather low state of stress
- b.) Compressive stresses, largest in the earthquake condition, have a maximum value of 1666 psi near the crown of the bottom arch.
- c.) Tensile stresses, largest at the low water level, of a significant magnitude are shown to exist in the analytical results. The area of maximum tensile stress is along arch F (elevation 1045). From the stress distributions of Phase I (Appendix A) it is clear that these high tensile stresses are caused by the assumed chemical expansion in which the arches above arch F have expanded far more than arch F. Since the magnitude of the assumed chemical expansion has a rather weak basis, these tensile stresses have an uncertain magnitude. However, we believe that the tensile stresses of the analytical results to be a conservative prediction of stress level because the critical stresses are dependent on the vertical gradient of expansion and the gradient assumed in this analysis is probably more severe than actually exists.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The results of this analysis closely approximate available measurements made on the dam but the available data is rather meager. This analysis, therefore, provides the best prediction of existing and future stresses and deflections which can be made at this time. We recommend that in the future the following action be taken.

- a.) The dam should be examined regularly for horizontal cracks as evidence of more severe expansion gradients than have existed heretofore.
- b.) Future measurements of dam deflections can be correlated with the analytical results by means of further superposition of the results of this analysis.
- c.) If correlation cannot be found through superposition of results of this analysis and further deterioration is significant, then a new analysis should be undertaken.

REFERENCES

- MacNeal, R. H., "Arch Dam Analysis With an Electric Analog Computer". Proceedings of the ASCE, Vol. 86, No. EM4, August 1960, pp.127-151.
- MacNeal, R. H., ELECTRIC CIRCUIT ANALOGIES FOR ELASTIC STRUCTURES. John Wiley and Sons, New York, London, 1962.
- UBER DIE BERECHNUNG DER FUNDAMENTDEFORMATION. Anhandlinger det Norske Videnskaps – Academi. Oslo, 1925.

Arch	Elevation	× _a (ft)	y _a (ft)	r _a (ft)	e (ft)	t _c (ft)	δ (deg)
A	1125.0	0	0	292.50	0	8.00	0
В	1110.0	0	0	292.50	0	8.00	0
С	1095.0	6.14	- 0.12	287.02	0	9.50	0
D	1080.0	11.50	- 0.33	282.67	0	11.00	0
E	1062.5	20.40	- 0.12	274.61	3.92	13.50	-0.46
F	1045.0	31.33	1.42	264.55	8.82	17.00	1.98
G	1027.5	51.90	5.90	245.38	15.82	20.50	5.02
Н	1010.0	67.81	9.64	230.30	21.56	24.00	5.65
1	992.5	83.14	13.40	216.17	26.92	27.50	6.54
J	975.0	98.54	17.88	200.56	32.62	31.50	7.68
К	960.0	111.85	20.96	187.60	38.20	35.00	7.10

TABLE 2.1. Geometry of Arches

-16-

TABLE 2.2. Physical Properties

Unit Weight of Water, 62.4 lb/ft³

✓ Unit Weight of Concrete, 144 1b/ft³

"Normal" Modulus of Elasticity of Concrete in Tension and Compression (see Section 2.5), 4 x 10⁶ psi

Shear Modulus of Concrete, 1.733 x 10⁶ psi

Coefficient of Thermal Expansion for Concrete, $5.6 \times 10^{-6} / {}^{\circ}F$

Condition	Description
А	Water load only - elevation 1103
В	Water load only - elevation 1069
B + E	Water elevation 1069, silt elevation 1037
G	Thermal contraction representing November 1957
Н	Thermal contraction representing October 1964
J	Chemical expansion varying linearly from 0.1% unrestrained elongation at elevation 1125 to 0 at elevation 960
К	Chemical expansion of 0.1% above elevation 1062.5 and 0 below
L	Chemical expansion of 0.1% above elevation 1095 between stations 0 + 68 and 3 + 43.0; 0 expansion for the remainder of the dam
M	Horizontal translation of the left abutment in a direction that the tangential motion of elevation 1110 is .7896 inches into the abutment and the radial displacement .1596 inches downstream. The resultant motion was 0.8056 inches. The left abutment was translated at all elevations 0.8056 inches
	in the same azimuth unection.

TABLE 3.1. Phase I Load Conditions

TABLE 3.2	Deflection	Results	of Phase	I

Plate Number	Cond. A	Cond. B	Cond. B + E	Cond. G	Cond. H	Cond. J	Cond. K	Cond. L	Cond. M	Calc. Oct '64	Meas. Oct '64	Calc. Nov '57	Meas. Nov '57
	Radial	Radial Deflection (inches)											
5	0038	0053	0065	.0043	.0034	0596	0751	0120	.1596	.1274	. 15	. 1601	. 16
6	.6984	.2263	.3321	.2216	.1660	-4.035	-4.405	-1.024	• 5949	7376	75	1.515	1.13
7	0566	0462	0580	.0171	.0080	6186	7810	.0046	.0257	2882		0138	
9	.5140	• 3424	.4380	. 1555	.1372	5906	.0354	.0049	. 2683	. 8261	.80	. 9378	.62
10	.7482	. 4886	.6228	.2416	.2121	-1.026	0738	.0136	.5182	1.284	1.30	1.508	1.13
11	.5325	. 3531	. 4506	. 1666	.1463	7224	0530	.0163	.5973	1.147	1.20	1.301	.82
	Tangent	tial Def	lections	(inches)									
5	0502	0233	0284	.0218	.0175	2777	2860	0137	7896	9043	90	8185	84
6	0757	0381	0467	0179	0162	.1062	.0183	.1461	2902	2985	.11	3838	. 16
7	.0590	.0161	.0195	0214	0169	. 2737	. 0965	0023	0028	.0416	10	.0148	. 08
9	.1970	.1226	. 1547	.0413	.0356	2781	0720	.0056	0505	.1060	.30	.0188	.30
10	0106	0078	0099	0060	0075	.0069	0046	.0021	2246	2439	10	2412	. 05
11	2202	1370	1735	0558	0487	.3192	.0789	.0033	4791	6607	85	7551	80

-19-

Condition	Water Elevation (ft)	Silt Elevation (ft)	Temperature Condition	Earth- Quake	Conditions From Phase I
R	1069	1037	Màximum	No	M + 0.3 L
S	1125	1037	Drop (see	No	+ 0.30K + 0.05 J
Т	1138	1069	Fig. 3.1)	No	(see Table 3.1
U	1125	1037		Yes	tor definitions)

TABLE 4.1. Phase II Load Conditions

.

FIG. 2.3 Arch and Cantilever Centerline Locations View Looking Upstream

-23-

FIG. 2.4. Lumped Element Identification

-24-

-25-

From Elev.	To Elev.	t _r /t
960	1062.5	110
1062.5	1095	.90
1095	Crest	•75

FIG. 2.6. Arch Thickness Reduction at Construction Joints

PRINTED IN U.S.A. ON CLEARPRINT TECHNICAL PAPER NOT TOIS

NO C310 20 DIVISIONS PER INCH DOTH WAYS, 120 BY 160 DIVISIONS

CLEARPRINT PAPER CO.

From Grouting Temperature

-28-

NO. 1015

TECHNICAL PAPER

PRINTED IN U.S.A. ON CLEARPRINT

SNO

180 DIVISI

120 BY

PER INCH BOTH

NO. C310, 20 DIVISIONS

CLEARPRINT PAPER CO

FIG. 4.1. Incremental Increase in Hydrostatic Pressure Due to Earthquake

APPENDIX A

PHASE I. STRESS RESULTS

23.53

-217.0

-271.5

32.05

9.492

27.54

-139.0

-6-439

-179.3

20.47

1 - 11.67 23.68 18.78 2.267

H 240.9

31.79

1 253.7

42.27

- 35.78

31.47

23.87

Load Condition A, Water Load Only, Elevation 1103

-147.2

28.09

-186.5

53.62

10.03

- 14.45 - 6.192 12.34

44.58

78,19

7.225

170.7 26.54

156.2

[251.3]

14.36

196.3 73.3 90.27 151.4 31.30 18.29 50.11 230.5 229. 256.8 238.01 11.52 15.18 -13.34 18.81 18.09_ 20.21 -15.46 378.2 5 327.0 12.42 3545 MEMBRANE STRESSES (ps1) 313,9 Horizontal XXX 12.95 _____ Vertical + For Compression xxx Shear Stress + For Left Abutment 8 6 3.253 9.839 41.45 -51.87 35.09 29.60 10.61 -9.701 -69.85 -45.15 -63.64 25.06 99.10 -19.00 12.86 1.441 -7.732 -36.53 13.29 BENDING STRESSES (psi on downstream face) 148.2 H 133.1 XXX Horizontal Vertical + For Compression xxx Twisting Shear + For

Load Condition B, Water Load Only, Elevation 1069 FIG. A-2

68.5 96. 10. 28. 20.1 29.6 10,1 111.8 118.8 107.6 81.4 10.1 - 5. 6. 16.6 20.7 18.6 229.4 F 174,6 9.6 4.1 50.5 / MEMBRANE STRESSES (ps1) 20215 Horizontal XXX 18.4 Vertical XXX + For Compression. xxx Shear Stress + For Left Abutment 8 6 6.5 25.4 -59.9 4,5 45.9 0,3 -15.7 6.2 -21.7 26.0 18. -20.4 -24.7 -25.8 37.6 3.7 -22.6 62,1 80.3 -65.9 70. 36.5,1 BENDING STRESSES (psi on downstream face) 110.7 -10. Exxx Horizontal Vertical + For Compression xxx Twisting Shear + For -32-

-22-	Characteristics and the second		and the second second	FIG. A-3			
	+ 600	and the state	TEON NOTENALS +	lis "6901 nottevala	dition B+E, Vater	rod beol	
	TEERS EnitainT XXX	1.01		-0-65-		7.07-	
	noiresargmod rof +	12:212	<u> </u>	2.821-	5218-	-148.3	
	Vertical	20'3	9.4	1-9-	2:0	5.91	3.8
	letnozinoh xxx	1.0 2.29-	6.95-	5769-	- 64.3	-13.3	
	(How meantanwob no isd) H	641 8'851	[2 11]	1-911-	8.121-	9.211-	1
	ERDING STRESSES	70.21-	5.5	9.9	8.21	9.41	9.6
	2-6-	22- 9.89-	5159-	-22:2-	-23.0	8:57-	
	- 5-LL=				1.11	8'81	
ſ	S:94 5:0 9:90-	2:3-	0.8	26			
0 1		-30.4 -33	-18.6	B.07- 12.64-1	5.67-	9.98-	
Ť			his I	2.0	0.4	Rici	4.1
	125 01 991-	2 1 -				13 21	4.4
9 E	<u>'24- 2.05 2.7 C</u>	<u><u><u></u></u></u>		2:01-	8.22-	1.46-	
2		2 01	15	171	91	61	-
C.	tnemtuda 11eJ					4	
			2		2		
		1					en aurunata
	seents needs xxx	1.304/1	1.2	1304.31	1.802	8.035	
	+ For Compression	1:05	91/10	1:0	1:0	01/4-	9.61
	1601179V XXX		RIP	1 2		-9-7-	6
	16thosinch XXX H	326 2 226	330.5	534.9	0.945	338.0	
	(1sd) SESSERIS INVERSENT (1sd) 59.22	9.12	9.01	5.12	1'6-	2:11-	8.75
	7:5	187 2.0	-2:5-	27		T.Q.	
	13.51=	112 11221	6.951	6191		1 041	1
Г	0.12 6-98 b.42	5.4	2.0-	9.2	2'8	2.01-	1.55
	<u> </u>	1/2 2:0	6.08	2.0	8'2	Z'2 10'ZZ	
- 4	2'SB 1'22 1'22	2.12-	8.6-	0.6	2.6	1-2 -	6:51
			-				
9 3	- <u>- 23.6</u> <u>84.7</u> <u>119.</u>	5'6 [5'67]	6.27	22	2.2	5.91]
		· ·	a consistent and confermation	an anticana an alterna a			

F16. A-3

-22-

tnemtuda theis

Load Condition J, Chemical Expansion: 0.1% Elevation 1125 0% Elevation 960

FIG. A-6

907.7 2010.2 399.2 258.9 . 759.2 381.6 103.8 987.3 1236 1043.1 686.6 145.8 317 35.8 373.9 365.2 208.4 88. 482.2 812.6 67.6 170.5 349.8/ MEMBRANE STRESSES (ps1) 57.1 Horizontal XXX 276.6 Vertical XXX + For Compression xxx Shear Stress + For Left Abutment 8 6 h 20.91 292.1 -835.3 -8.454 664.6 -60.81 123.6 -19.46 -21.18 62.27 -312.7 -258.6 -385.2 -405.6 446.8 -17.13 26.39 -842.5 15.97 -63.60 --689.5 -1197 282.61 BENDING STRESSES (psi on downstream face) -80.26 -956.4 XXX Horizontal ------ Vertical + For Compression xxx Twisting Shear + For -36-

Load Condition K, Chemical Expansion: 0.1% Above Elevation 1062.5

758.6 411.4 988. 317.7 167.2 277.8 91.0 1388 1381 1746 1652 98.3 -63.7 42.5 114.5 16.5 36.6 -13.3 -199,6 -480.5 13.4 73.2 167.9.1 MEMBRANE STRESSES (psi) -45.0 Horizontal XXX 102.8 Vertical XXX + For Compression Shear Stress XXX + For "Left Abutment 8 12.2 221,9 -889. 44.6 693.6 27.0 253.2 65.7 54.5 28.1 -352, -299.1 -337.3 -315.8 540.2. 65.3 212.3 -1017 201.3 109,0 -1474 -1617 246.9 -BENDING STRESSES (psi on downstream face) 104. xxx Horizontal Vertical + For Compression xxx Twisting Shear + For

Right Abutment 22 24 20 18 16 14 12 10 B 31.28 18.07 12.58 -1.429 -1.847 -14,40 -5.374 -2.769 5.283 -.6324 -2.867 -5.516 -5.063 -.9880 4.229 -7.392 48.75 28.50 [18.76] -.7425 [-20.36] -24.47 -10.24 -5.240 -1.236 -6.736 15,40 7.348 6.008 5.895 3.950 15,53 4.087 -3.526 -8.795 -8.576 -2.619 4.347 -14.01 E 62.42 79.15 48.56 2.784 -42.18 -55.30 -27.46 6.015 12.87 12.14 8-893 -10.32 12.25 2.504 12.43 3 353 9.551 -5.087 -17.72 -24.93 -24.29 -16.54 -36.37 H 196.5 82.42 13.28 -53.60 -80.10 -48.43 25.57 53.85 12.73 8.566 9.932 -17.66 15.72 10,99 1 . * -9.021 -9.458 -24.67 -40.68 -50.04 -29.22 40.61156.7 -58.79 112.0 28.67 -87.35 -38,58 -103.3 10.81 -6.523 18.85 -1,363 9.437 96,68

Load Condition M, Translation of the Left Abutment

$$\frac{770}{2.656} = \frac{5.573}{1.61} + \frac{72.94}{9.874} = \frac{-77.21}{9.78} = \frac{1}{-9.560} = \frac{1}{9.38} = \frac{1}{9.79} = \frac{1}{9.78} = \frac{1}{9.79} = \frac{1}{9.38} = \frac{1}{9.79} = \frac{1}{9.38} = \frac{1}{9.79} = \frac{1}{1.300} = \frac{1}{1.300$$

APPENDIX B

PHASE I. DEFLECTION RESULTS

Load Condition A, Water Load Only, Elevation 1103

-41-

FIG. B-1

\$

Load Condition B. Water Load Only, Elevation 1069

FIG. 8-2

-42-

Load Condition B+E, Water Elevation 1069, Silt Elevation 1037

FIG. B-3

Load Condition G. Thermal Contraction Only. November 1957

< *

FIG. 8-4

Load Condition H. Thermal Contraction Only. October 1964

FIG. 8-5

-45-

Load Condition J, Chemical Expansion: '0.17 Elevation 1125 07 Elevation 960

-46-

FIG. B-6

FIG. 8-7

Load Condition L, Chemical Expansion: 0.1% of Weakened Section Above Elevation 1095 FIG. 8-8

-48-

-49-

APPENDIX C

PHASE II. STRESS RESULTS

FIG. C-I

Load Condition S, Water Elevation 1125

F1G. C-2

10

4.1

156.8

321:9

E16. C-3

Right Abutment 22 24 10 18 16 14 12 20 -71.5 3.4 285.4 116.7 -155.5 -41. 11,5 -251.9 -75.9 38.5 -322.0 56.6 73.5 - 4.1 48.9 43.7 -105.2 -221,3 0.3 91.2 282 1110,1 -123.7 -533,8 - 40/10 -311 - 2-1915 -20 -535 -7.3 41.6 24,9 -281.5 -114.6 49,3 58.9 -14.9 F 294.8 546.8 -6.4 278.1 161.7 -250.1 -470.8 -349.0 -605.4 -460. -542.5 -488.5 -486.4 -479,5 -120.9 -15.2 18.2 27.2 4.9 -3.0 -108.3 22.0 H 194.7 215.6 -652,8 -3,8 545.8 -360.8 -48 -143.5 -196.7 -148.7 -281.3 =217,5 -2775 128.9 28.6 18.5 - 81.3 - 20.1 - 25.0 -70.9 1 847.1 215.2 690.3 -820.9 -46.8 1-465.3 -24,3 -16.2 1.3 24.0

> Load Condition U, Earthquake Condition, Water Elevation 1125, Silt Elevation 1037 FIG. C-4

APPENDIX D

PHASE II. DEFLECTION RESULTS

FIG. D-1

Load Condition T, Water Elevation 1138

FIG. D-3

-58-

Load Condition U, Earthquake Condition, Water Elevation 1125. Silt Elevation 1037

-59-

FIG. D-4

APPENDIX E

PHASE II. PRINCIPAL STRESS RESULTS

D

			1 a 1			5	
WA	TER ELEV.	1069 + SII	TABLE E-1 LT ELEV. 10)37 + MAX.	TEMP. COND	•	
		SMAX	SMIN	THETA	SX	SY	TAU
B 2	INTRADOS	89.7	-186.7	55.3	-97.0	0.	129.4
	EXTRADOS	667.3	-32.1	-12.4	635.2	0.	-146.3
84	INTRADOS	3 88°.7	-28.8	15.2	360.0	0 a	105.8
V	EXTRADUS	281.2	-40.1	-20.7	241.0		-106.2
86	INTRADOS	372.2	-7.5	8.1	364.7	0.	52.7
	EXTRADOS	306.0	-2.1	-4.8	303.8	0.	-25.6
B_8	INTRADOS	378.7	-0.9	2.7	377.8	0.	18 .1
	EXTRADOS	352.4	-0.0	0.4	352.4		2.5
B10	INTRADOS	353.9	-0.4	2.0	353.4	0.	12.4
	EXTRADOS	341.6	-1.6	-3.9	340.0	0.	-23.3
B12	INTRADOS	318.6	-0.3	1.8	318.3		9.9
	EXTRADOS	304.5	-0.8	-3.0	303.7	0.	-15.8
814	INTRADOS	270.9	-0.2	1.4	270.7	0.	6.5
	EXTRADOS	290.1	-2.2	5.0	287.9	0.	25.3

.

-61-

21

 $(\hat{\mathbf{s}})$

a . *

				*	0 × *		, e *		
					: O				
					8				
		÷ ,					<u>.</u>		2
	WATER ELEV.	1069 + SI	LT ELEV. 1	037 + MAX.	TEMP. CON	D.			
		SMAX	SMIN	THETA	SX	SY	TAU		
816	5 INTRADOS	90.7	-0.2	-3.0	90.4	0.	-4.7	5	
	EXTRADOS	218.6	-2.6	6.2	216.0	0.	23.8		
B18	8 INTRADOS	165.9	-2.6	-7.2	163.2	0	-20.8		
	EXTRADOS	192.0	-0.0	-0.7	192.0	0.	-2.5	*: 	
82(D INTRADOS	320.1	-6.5	-8.1	313.6	0.	-45.5	-	<u> </u>
	EXTRADOS	149.6	-1.1	5.0	148.4	0.	13.1		
B22	2 INTRADOS	423.9	-26.3	-14.0	397.6	0.	-105.6	- 7	·
	EXTRADOS	110.5	-14.1	19.7	96.4	0.	39 .5	т	
824	4 INTRADOS	232.0	-93.6	-32.4	138.4	0.	-147.3		
	EXTRADOS	635.7	-3.3	4.1	632.4	0.	45.7		
D 2	2INTRADOS_	359.8	-140.6	32.0	219.2	.0.	225.0		
	EXTRADOS	651.8	-117.2	-23.0	534.6		-276.4		
D 4	+ INTRADOS	473.5	-249.2	14.1	430-6	-206-3	170-7	202	-
	EXTRADOS	554.7	118.4	-32.6	427.8	245.3	-198.2	î	
	*		V						

8

-62-

	6			*					
									191
	~			ana ang sa					a
W.Z	ATER ELEV.	1069 + SI	LT ELEV. 10)37 + MAX.	TEMP. CON	D.	× .	-	-
		SMAX	SMIN	ТНЕТА	SX	SY	TAU		
D 6	INTRADOS	538.9	-285.0	4.5	533.9	-280.0	63.9	1	
	EXTRADOS	459.2	316.9	-20.0	442.5	333.6	-45.8		
D_8	INTRADOS	600.8	-274.8	1.6	600.2	-274.1	24.0		
	EXTRADOS	475.5	388.1	4.9	474.8	388.7		* <u>4</u>	
D10	INTRADOS	549.8	-268.9	2.7	548.0	-267.1	38.3	4	
	EXTRADOS	476.7	357.9	-19.7	463.2	371.5	-37.7		
D12	INTRADOS	470.2	-302.3	2.6	468.6	-300.6		*	
	EXTRADOS	457.1	339.4	-14.0	450.2	346.2	-27.6	11 ⁴	
-									
014	INTRADOS	365.7	-233.4	1.8	365.1	-232.8	19.0		
	EXTRADOS	483.3	273.5	8.8	478.5	278.4	31.6		14
D16	INTRADOS	400.5	-131.3	-1.7	400.1	-130.8	-15.6		
	EXTRADOS	555.9	257.9	5.9	552.7	261.0	30.3		
D18	INTRADOS	488.6	-167.2	-4.9	483.8	-162.4	-56.0		
	EXTRADOS	527.8	258.0	0.7	527.8	258.0	3.3		
			A CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION OF	A COMPANY OF A COM					

т. С -----

-

-63-

WATER ELEV. 1069 + SILT ELEV. 1037 + MAX. TEMP. COND. SMAX SMIN THETA SX SY TAU D20 INTRADOS 631.5 -249.0 618.7 -6.9 -236.2 -105.5 477.6 291.7 458.9 EXTRADOS 18.5 310.4 55.9 INTRADOS D22 684.2 -266.6 -12.1 642.2 -224.6 -195.3 EXTRADOS 507.1 166.9 49.5 310.6 363.4 168.1 024 INTRADOS 238.0 -270.5 133.2 -32.5 0. -253.7 EXTRADOS 541.7 -94.8 22.7 446.9 226.6 0. F 4 INTRADOS 39.6 -426.0 16.9 129.8 0. -386.4 0. EXTRADOS 520.4 -65.0 109.5 455.4 -183.9 F 6 INTRADOS 47.4 -656.5 3.8 44.3 -653.4 46.3 EXTRADOS 722.4 -94.0 93.5 -90.9 719.4 -49.6 F 8 INTRADOS 180.6 -631.8 3.6 177.5 -628.7 50.3 EXTRADOS 737.8 -234.6 90.6 -234.5 737.7 -10.0 F10 INTRADOS 26.5 -598.6 3.5 24.1 -596.3 37.9

89.7

-220.4

741.7

5.4

741.7

EXTRADOS

-64-

-220.5

		4 I					×
W	ATER ELEV.	1069 + SI	LT ELEV. 10)37 + MAX.	TEMP. CON	D.	
		SMAX	SMIN	THETA	SX	SY	TAU
F12	INFRADOS	-136.0	-615.4	4.7	-139.2	-612.2	39.4
	EXTRADOS	689.3	-127.1	90.7	-127.0	689.2	-10.4
F14	INTRADUS	-278.3	-527.6	3.6	-279.3	-526.6	15.4
- 1.	EXTRADOS	633.6	2.5		2.7	633.4	10.0
F16	INTRADOS	-283.7	-473.9	-7.0	-286.5	-471.1	-22.9
	EXTRADOS	650 .7	55.1	89.1	55.3	650.5	9.6
F18	INTRADOS	-167.4	-505.8	-11.1	-179.9	-493.3	-63.9
	EXTRADUS	635.5	-39.1	88.9	-38 .9	635.3	12.5
F20	INTRADOS	34.4	-550.6	-10.8	13.9	-530.1	-107.8
	EXTRADOS	613.7	-204.1	85.4	-198.9	608.5	65.1
F22	INTRADOS	291.4	-405.0	-13.5	253.7	-367.3	-157.6
	EXTRADOS	484.7	-361.3	77.9	-324.2	447.7	173.1
F24	INTRADUS	279.5	-121.5	-33.4	158.0	0.	-184.3
	EXTRADOS	204.2	-268.8	48.9	-64.6	0.	234.3

+

-65-

W/	ATER ELEV.	1069 + SI	LT ELEV. 1	037 + MAX.	TEMP. CON	ID •	
		SMAX	SMIN	THETA	SX	SY	TAU
4 8	INTRADOS	280.5	-362.7	6.6	272.0	-354.2	73.3
	EXTRADOS	402.0	-119.4	93.2	-117.8	400.4	-28.6
H10	INTRADOS	426.4	-353.6	3.6	423.3	-350.5	49.5
	EXTRADOS	543.5	-74.9	90.1	-74.9	543.5	-1.3
	145						
H12	INTRADOS	78.0	-285.0	2.8	77.1	-284.2	17.5
	EXTRADOS	405.0	113.0	84.3	115.8	402.2	28.7
H14	INTRADOS	-109.0	-202 .2	-9.3	-111.5	-199.8	-14.9
	EXTRADOS	369.7	299.5	70.4	307.3	361.8	22.1
H16	INTRADOS	-117.5	-178.8	-34.7	-137.4	-158.9	-28.7
	EXTRADOS	373.9	352.8	45.4	363.2	363.5	10.5
H18	INTRADOS	2.5	-198.4	-13.7	-8.7	-187.1	-46.2
	EXTRADOS	366.7	219.7	86.3	220.3	366.1	96
H20	INTRADOS	243.5	-246.3	-10.2	228.2	-231.1	-85.1
	FXTRADOS	354.4	-32.4	85.1	-29.6	351.5	33.2

-66-
				ж. 4-				
						······		
W	ATER ELEV.	1069 + SI	LT ELEV. 1	037 + MAX.	TEMP. CON	D.		
		SMAX	SMIN	THETA	SX	SY	TAU	
H22	INTRADOS	505.7	-362.9	-8.3	487.8	-345.0	-123.6	
	EXTRADOS	426.9	-249.5	83.8	-241.6	419.0	72.7	
J10	INTRADOS	361.9	-175.8	8.1	351.3	-165.2	74.9	
	EXTRADOS	254.3	-126.8	96.4	-122.1	249.6	-42.2	
J12	INTRADOS	145.7	-74.9	2.0	145.4	-74.6	7.6	
	EXTRADOS	318.4	209.0	45.4	263.0	264.4	54.6	•
J14	INTRADOS_		60.2	134.7	-24.9	-24.1	-35.7	
	EXTRADOS	526.0	227.8		521.3	232.5		
J16	INTRADOS	17.8	-85.2	110.2	-72.9	5.5	-33.4	
	EXTRADOS	565.9	216.4	2.4	565.3	217.1	14.8	
J18	INTRADOS	90.7	-5.3	-23.4	75.6	9.8	-34.9	
	EXTRADOS	376.2	205.6	1.9	376.0	205.•7		
J20	INTRADUS	334.7	-31.6	-12.0	318.8	-15.7	-74.6	
	EXTRADOS	191 4	34 5	81.9	37.6	188 3	21 0	

-67-

					and the second second	11 - 14 - 10 - 10 - 10 - 10 - 10 - 10 -		a a b
W	ATER ELEV.	1069 + SIL	T ELEV. 1	037 + MAX.	TEMP. COND.			
		SMAX	SMIN	THETA	SX	SY	TAU	
J22	INTRADOS	545.5	-21.2	-11.1	524.3	0.	-107.4	
	EXTRADOS	6.4	-274.1	81.3	-267.7	0.	42.0	
		· · · · · · · · · · · · · · · · · · ·	. ×					
	9	7						
			х.		-			
_		5						
×	2		1		-	1		
				:e 		-		
				3				
								-

141 1							A.	
WA	ATER ELEV.	1125 + SIL	TABLE E-2 T ELEV. 10)37 + MAX.	TEMP. COND	•		
		SMAX	SMIN	THETA	SX	SY	TAU	
B 2	INTRADOS	268.6	-32.9	19.3	235.7	0.	94.0	
	EXTRADOS	756.2	-12.7	-7.4	743.5	0.	-98.0	
8 4	INTRADOS	576.5	-9.7	7.4	566.7	0	75.0	
	EXTRADOS	439.1	-5.4	-6.3	433.6	0.	-48.7	
B 6	INTRADOS	530.2	-1.9	3.4	528.3	0.	31.6	
	EXTRADOS	470.6	-1.3	3.0	469.3	0.	24.9	
B 8.	INTRADOS	552.5	-0.0	0.5	552.4	0.	5.2	
	EXTRADOS	537.6	-0.9	2.3	.536.8	0.	21.5	
810	INTRADOS	538.9	-0.1	0.7	538.8	0.	6.8	
	EXTRADOS	532.3	-1.7	-3.2	530.6	0.	-30.1	
812	INTRADOS	496.2	-0.4	1.7	495.8		14.3	
	EXTRADOS	490.5	-2.3	-3.9	488.2		-33.6	
814	INTRADOS	459.2	-0.5	1.9	458.7	0.	15.1	
	EXTRADOS	502.9	-0.3	-1.3	502.6	0.	-11.8	

.....

-69-

6			100 E
WATER ELEV. 1125 + SILT ELEV. 1037 + MAX. T	FEMP. COND	•	
SMAX SMIN THETA	SX	SY	TAU
6 INTRADOS 387.7 -0.1 0.8	387.6	0.	5.3
EXTRADOS 566.4 -0.4 -1.5	566.0	0.	-14.8
B INTRADOS 476.9 -0.2 -1.1	476.7	0.	-9.0
EXTRADOS 548.0 -0.9 -2.3	547.1	0.	-21.7
D INTRADUS 625.6 -2.2 -3.4	623.4	0.	-37.2
EXTRADOS 462.5 -0.0 -0.5	462.4	0.	-4.3
2 INTRADOS 734.5 -20.3 -9.4	714.2	0.	-122.1
EXTRADOS 350.8 -3.2 5.5	347.6	0.	33.7
C			
H INTRADOS 580.7 -59.8 -17.8	520.9	0.	-186.3
EXTRADOS 904.3 -3.0 3.3	901.3	0.	52.2
2 INTRADOS 526.2 -47.4 16.7	478.8	0.	158.0
EXTRADOS 748.5 -53.1 -14.9	695.4		-199.3
INTRADOS 670 1 -226 5 7 2	664. 2	- 2.2.1 .2	115 (
ENTRADUS 019+1 =230+3 1+3	004.2	-221.1	112.6
EXTRADUS 687.4 184.8 -15.1	653.4	218.9	-126.3

-70-

0.

. .

1

12

WA	ATER ELEV.	1125 + SI	LT ELEV. 10	37 + MAX.	TEMP. CON	D.	
		SMAX	SMIN	THETA	SX	SY	TAU
D 6	INTRADOS	868.6	-197.9	1.3	868.1	-197.3	24.6
	EXTRADOS	733.7	267.7	1.6	733.3	268.1	13.0
D 8	INTRADOS	944.6	-135.1	-0.4	944.6	-135.1	-8.0
	EXTRADOS	819.5	270.4	3.9		272.9	37.1
010	INTRADOS	914.6	-137.4	1.0	914.2	-137.1	18.5
	EXTRADOS	822.2	249.8	-4.7	818.4	253.7	-47.0
D12	IN ERADOS	836.8	-222.4	1.9	835.6	-221.2	35.6
	EXTRADOS	840.8	249.6	-5.6	835.2	255.2	-57.4
			ें <u>भ</u>				
D14	INTRADOS	721.3	-175.4	2.2	720.0	-174.2	33.8
	EXTRADOS	913.4	249.7	-1.8	912.8	250.4	-20.5
D16	INTRADUS	672.5	-209.3	0.4	672.5	-209.2	6.2
	EXTRADOS	927.3	301.0	-2.0	926.5	301.8	-22.1
_					7/1		20.4
D18	INTRADOS	761.9	-267.0	-1.7	(61.0	-266.1	-30.4
	EXTRADOS	870.9	356.6	-3.1	869.4	358.1	-27.7

.....

-71-

*

		SMAX	SMIN	THETA	SX	SY	TAU	
020	INTRADOS	910.4	-366.3	-3.5	905.6	-361.5	-78.1	
	EXTRADOS	757.0	437.9	3.8	755.6	439.3	21.2	
022	INIRADOS	955.6	-359.5	-8.4	927.8	-331.7	-189.1	
	EXTRADOS	663.1	391.6	35.4	571.8	482.9	128.3	
024	INTRADOS	519.1	-140.6	-27.5	378.6	0.	-270.1	
	EXTRADUS	631.4	-55.8	16.6	575.6	0.	187.8	
F4	INTRADOS	24.•9	-266.3	17.0		-241.4	81.4	
	EXTRADOS_	356.5	-67.5	113.5		289.0	-155.2	
F 6	INTRADOS	322.2	-385.4	0.2	322.2	-385.4	2.6	
	EXIRADOS	432.8	140.6	94.3	142.2	431.2	-21.7	11
F 8	INTRADOS	472.8	-423.6	0,4	472.8	-423.6	5.8	
	EXTRADOS	544.7	26.9	87.6	27.8	543.8	21.6	
F10	INTRADOS	335.8	-396.8	0.4	335.8	-396.8	5.5	
		547 0	21.0	00 5	22.2	546 6	12 7	

-72-

W	ATER ELEV.	1125 + SI	ILT ELEV. 1	037 + MAX.	TEMP. CON	D.	
		SMAX	SMIN	THETA	SX	SY	TAU
F12	INTRADOS	151.6	-448.7	2.1	150.8	-447.9	21.9
	EXTRADOS	510.8	173.3	94.1	175.0	509.1	-24.2
14	INTRADOS	-34.3	-383.5	3.1	-35.3	-387.5	18.9
	EXTRADOS	502.0	391.9	95.4	392.9	501.0_	-10.4
F16	INTRADOS	-80.1	-394.3	-0.5	-80.1	-394.2	-3.0
	EXTRADOS	541.9	473.6	100.1	475.7	539.8	-11.7
18.	INTRADOS	57.1	-430.9	-3.9	54.8	-428.6	-33.1
	EXIRADOS	562.2	329.2		329.8	561.6	-11.9
20	INTRADOS	300.6	-483.3	-4.3	296.2	-478.9	-58.6
	EXTRADOS	562.2	75.5	87.3	76.6	561.1	23.3
-22	INTRADOS	567.9	-340.2	-6.3	557.1	-329.4	-98.4
	EXTRADOS	450.1	-136.2		-115.5	429.4	108.2
24	INTRADOS	493.9	-32.8	-14.5	461.1	0.	-127.4
	EXTRADOS	204.8	-127.3	38.3	77.5	0.	161.5

-73-

3	W/	ATER ELEV. 1	125 + SI	LT ELEV. 10	37 + MAX.	TEMP. CON	D.		2	
			SMAX	SMIN	THETA	SX	SY	TAU		
	H 8	INTRADOS	517.3	-105.1	2.9	515.7	-103.5	31.2		
		EXTRADOS	119.2	12.8	86.2	13.3	118.7	7.0		
	H10	INTRADOS	703.2	-173.9	1_4	702.7	-173.4	20.7		
		EXTRADUS	372.7	57.8	86.7	58.9	371.6	18.3		
-	H12	INTRADOS	284.8	-115.7	-0.7	284.8	-115.6	-5.2		
		EXTRADOS	330.6	208.8	15.8	321.6	217.8	31.9		
	H14	INTRADOS	200	-58.7	-19,4	11.3	-50.0	-24.7		
		EXTRADOS	621.4	200.4	2.4	620.7	201.2	17.7		
	H16	INTRADOS	-27.9	-66.9	126.5	-53.1	-41.7	-18.6		
		EXTRADOS	727.7	213.3	-0.1	727.7	213.3	-0.5		
	H18.	INTRADOS	127.9	-81.8	-5.5	125.9	-79.8	-20.1		
		EXTRADOS	5266	242.9	-2.3	526.1	243.4	-11.5		
2	H2 0	INTRADOS	468.9	-153.5	-4.3	465.4	-150.0	-46.4		-
		EXTRADOS	274.4	153.2	90.4	153.2	274.4	-0.9		

-74-

				3				
					*		6	
) <u>.</u>	TEMP. COND	37 + MAX.	LT ELEV. 10	1125 + SI	ATER ELEV.	W
	TAU	SY	SX	THETA	SMIN	SMAX		
	-65.3	-141.4	836.3	-3.8	-145.7	840.6	INTRADOS	122
	20.6	228.8	-183.9	87.1	-184.9	229.8	EXTRADOS	v
	53.7	42.3	640.7	5.1	37.5	645.5	_INTRADOS_	110
	-24.6	22.7	-109.3	100.2	-113.7	27.1	EXTRADOS	
	-11.7	60.8	313.4	-2.7	60.2	313.9	INTRADOS	112
	64.5	119.6	428.6	11.3	106.7	441.6	EXTRADOS	
	-49.7		25.0	118.1	-1.5	118.2	INTRADOS	J14
		99.5	811.6	3,1	97.4	813.7	EXTRADOS	
	*							
	-29.4	102.2	-72.0	99.3	-76.8	107.1	INTRADOS	116
-	7.9	90.4	911.0	0.5	90.3	911.1	EXTRADOS	
	-16.8	101.5	134.9	22.6	94.5	141.9	INTRADOS	118
	-11.5	98.9		1.2	98.7	647.9	EXTRADOS	
× ×			10					
	-57.3	72.3	497.3	-7.5	64.7	504.9	INTRADOS	120
	2.8	105.5	158.5	3.0	105.3	158.6	EXTRADOS	
			a			1		

-75-

......

					designed and the second		
	WATER ELEV.	1125 + SILT	ELEV.	1037 + MAX.	TEMP. COND.		
	5 a	SMAX	SMIN	THETA	SX	SY	TAU
J22	INTRADOS	821.4	-11.4	-6.7	810.0	0.	-96.6
	EXTRADOS	2.2	-289.8	85.0	-287.6	0.	25.1

-76-

			TADLE E 2	2		at the set of the set	
W	ATER ELEV.	1138 + SIL	T ELEV. 1	069 + MAX.	TEMP. COND	8	*
		SMAX	SMIN	THETA	SX	SY	TAU
2	INTRADUS	466.0	-7.8	7.4	458.2	0.	60.3
	EXTRADOS	806.4	-4.0	-4.0	802.4	0.	-56.8
.4.	INTRADUS	692.8	-3.6	4.1	689.2	. 0	50.0
-	EXTRADOS	566.9	-0.1	-0.6	566.8		-5.4
6	INTRADOS	624.8	-0.7	1.9	624.1	0.	20.9
	EXTRADOS	578.5	-5.6	5.6	572.9	0.	56.7
88	INTRADOS	653.2	-0.0	0.2	653.2	0	
	EXTRADOS .	642.4	-1.4	2.6	641.0		296
10	INTRADOS	645.5	-0.1	0.7	645.4	0.	7.6
	EXTRADOS	635.5	-2.1	-3.3	633.4	0.	-36.6
12	INTRADOS	593.5	-0.6	1.8	592.9	0	18.2
	EXTRADOS.		-3.2	-4.02	587.1		43.5
14	INTRADUS	556.0	-0.8	2.1	555.2	0.	20.5
	EXTRADOS	617.8	-1.6	-2.9	616.2	0.	-31.4

.

1.00

-77-

	ATER ELEV.	1138 + STI	T ELEV. 10)69 + MAX.	TEMP. COM	<u>ມ</u>			
		SMAX	SMIN	THETA	SX	SY	TAU		
816	INTRADOS	537.6	-0.2	1.1	537.4	0.	10.2		*8
	EXTRADOS	756.6	-1.8	-2.8	754.8	0.	-36.4	1.16.7 m.)	
81.8	INTRADOS	649.7	-0.1	-0.6	649.6	0.	-7.1		
	EXTRADOS	741.1	-1.4	-2.5	739.7	0.	-32.0		
в20	INTRADOS	808.3	-1.7	-2.7	806.5	0.	-37.5		
	EXTRADOS	644.7	-0.2	-1.1	644.4	0.	-12.2		
822	INTRADOS	912.3	-17.0	-7.8	895.3	0 .	-124.5		
	EXTRADOS	500.2	-0.9	2.5		.0.	21.6		
		1							
B24	INTRADOS	798.3	-46.2	-13.5	752.1	0.	-191.9		
	EXTRADOS	1062.5	-1.2	1.9	1061.3	0.	35.9		
D 2 .	INTRADOS	.640.6	-19.8	10.0	620.7	0 .	112.7	-	
	EXTRADO <mark>S</mark> .		-24.9	-9.8	802.0		-143.5	¥-	
	16. V	7.7		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -					
D 4	INTRADOS	799.4	-175.8	4.8	792.7	-169.1	80.5		
	EXTRADOS	787.9	129.6	-6.4	779.7	137.7	-72.7		

-78-

	WA	TER ELEV.	1138 + SI	LT ELEV. 10	69 + MAX.	TEMP. CON	D.	
			SMAX	SMIN	THETA	SX	SY	TAU
D	6	INTRADOS	1042.3	-55.1	0.4	1042.2	-55.1	6.8
	e.	EXTRADOS	899.1	136.4	4.0	895.4	140.1	53.0
D	.8	INTRADOS	1129.3	35.3	-0.8	1129.1	35.5	-15.5
		EXTRADOS	987.9	114.7	3.3	984.9	117.7	50.6
D	10	INTRADOS	1108.4	18.0	0.9	1108.2	18.2	16.3
		EXTRADOS	989.3	101.5	-3.6	985.8	105.0	-55.8
D	12	INTRADOS	1016.6	-96.0	21	1015.1	-94.5	404
		EXTRADOS	1024.8	116.2	-4.6	1018.9	122.1	-73.2
D	14	INTRADOS	879.8	-58.0	2.7	877.7	-55.9	44.3
		EXTRADOS	1126.7	147.5	-2.8	1124.3	149.9	-47.9
D	016	INTRADOS	784.4	-162.3	1.0	784.1	-162.0	16.8
		EXTRADOS	.1111.3	235.2	-3.5	1108.1	2384	
J	18	INTRADOS	886.9	-233.8	-1.3	886.3	-233.2	-25.9
		EXTRADOS	1037.3	323.1	-3.7	1034.3	326.0	-45.8

.

-79-

WAFER ELEV. 1138 + SILT ELEV. 1069 + MAX. TEMP. COND.

		SMAX	SMIN	THETA	SX	SY	TAU	
D20	INTRADOS	1056.1	-336.6	-3.1	1051.9	-332.4	-75.9	
	EXTRADOS	897.5	409.7	0.7	897.4	409.8	6.2	
D22	INTRADOS	1117.1	-326.8	-7.6	1091.6	-301.3	-190,4	
	EXTRADOS	7.29.3	426.0	205	692,2	463.1	99.4	
D24	INTRADOS	698.2	-110.4	-21.7	587.8	0	-277.6	
	EXTRADOS	712.5	-29.9	11.6	682.6	0.	146.0	
F 4	INTRADOS	19.1	-195.6	17.4	0	-176.5	61,1	
	EXTRADOS	273.2	-66.3	116.2	0	2.06.9	-134.5	
F 6	INTRADOS	512.5	-261.2	-0.4	512.5	-261.2	-5.1	
	EXTRADOS	305.4	296.9	134.7	301.1	301.2	-4.3	
F_8	INTRADOS.	669.6.	-315.7		669.6			
	EXTRADOS	452.7	159.0	828	163.6	448.1	36.7	
F10	INTRADOS	530.5	-298.0	0.0	530.5	-298.0	0.2	
	EXTRADOS	452.1	138.4	86.9	139.3	451.2	17.1	

-80-

<i>١</i> ٧	ATER ELEV.	1138 + SI	T ELEV. 10)69 + MAX.	TEMP. CON	D.		1
	1	SMAX	SMIN	THETA	SX	SY	TAU	
F12	INTRADOS	309.0	-366.0	1.8	308.4	-365.3	21.3	
	EXTRADOS	428.2	321.7	107.9	331.8	418.1	-31.2	
F14	INTRADOS	80.8	-311.8	3.7		-310.1	25.2	
	EXTRADOS	610.9	429.9	-7.0	6.0.8 • 2	432.5	-21.8	
F16	INTRADOS	8.8	-347.7	1.0	8.7	-347.5	6.4	
	EXTRADOS	716.9	479.5	-6.5	713.9	482.5	-26.5	
F18	INTRADOS	169.6	-392.9	-2.7	168.3	-391.6	-266	
	EXTRADOS		502.,6		537.3		-27.6	
F20	INTRADOS	463.8	-452.3	-3.2	460.9	-449.4	-51.3	
	EXTRADOS	529.7	224.4	89.1	224.5	529.6	4.9	
F22	INTRADOS	787.8	-305.6	-5.1	779.3	-297.1	-96.2	
	EXTRADOS	435.2	-32.0	80.1	-18.3	421.5	78.9	
					*			
F24	INTRADOS	681.4	-25.9	-11.0	655.5	0.	-132.9	
	EXTRADOS	236.6	-65.5	27.7	171.1	0.	124.4	

.

-8-

WATER ELEV. 1138 + SILT ELEV. 1059 + MAX. TEMP. COND.

		SMAX	SMIN	THETA	SX	SY	TAU
H 8	INTRADOS	722.9	4.7	2.7	721.3	6.3	33.7
	EXTRADOS	99.8	6.4	16.1	92.7	13.5	24.8
H10	INTRADOS	921.4	-115.5	1.3	920.9	-115.0	22.7
	EXTRADOS	324.6	127.5	81.2	132.1	320.0	29.8
		×				2	Υ
H12	INTRADOS	429.4	-61.8	-0.9	429.3	-61.7	-7.3
	EXTRADOS	462.2	154.6	6.5	458.3	158.5	34.5
H14	INTRADOS	98.5	-10.6	-14.0		-4.2	-25.7
	EXTRADOS	8378	156.9	1.2	837.5	1572	14.3
H16	INTRADUS	8.5	-21.7	-33.7	-0.8	-12.4	-14.0
	EXTRADOS	983.3	176.3	-0.7	983.2	176.4	-9.8
H18	INTRADOS	209.7	-56.0	-3.0	209.0	-55.3	-13.7
	EXTRADOS	742.9	217.2	-2.9	741.6	218.5	-26.3
							- Ca.
H20	INTRADOS	625.8	-137.6	-3.2	623.4	-135.2	-43.0
	EXTRADOS	290.2	249.0	-33.0	278.0	261.2	-18.8

-82-

			2						2
					2 1 &				
	W	ATER ELEV.	1138 + SI	ILT ELEV. 10)69 + MAX.	TEMP. CON	D.		
d.			SMAX	SMIN	THETA	SX	SY	TAU	
	H22	INTRADOS	1093.6	-78.7	-3.1	1090.1	-75.2	-64.0	5
		EXTRADOS	175.8	-159.1	90.3	-159.1	175.8	-1.6	
	J10	INTRADOS	875.3	129.0	4.8	870.1	134.2	62.4	
		EXTRADOS	-63.5	-111.8	106.4	-107.9	-67.4	-13.1	
	.112	INTRADOS	457.5	110.7	-2 1	457 0	112 1	-12 0	
	012	EXTRADOS	576.1	62.1	Q 1	565 8	72 5	72 0	
		LATINAOUS	510.1	02.11	3+1		12.05	12.0	~
	J14	_INTRADOS_	166.5	52.2	125.7	91.2	127.5	-54.2	
		EXTRADOS	1053.1	62.2	2.3	1051.6	63.7	39.1	
	.116	INTRADOS	129.4	-47.7	99.0	-43.3	125-1	-27.4	
		EXTRADOS	1194.9	61.5	0.0	1194.9	61.5	0-9	• ••• •
									÷
	J18	INTRADOS	196.4	120.9	-9.0	194.5	122.8	-11.7	
		EXTRADOS		77.9	-1.8	877.5	7.8.6	-25.1	
-	J20	INTRADUS	639.4	90.6	-6-3	632-7	97-2	-60-2	
		EXTRADOS	265.9	86.7	-3.4	265.3	87.3	-10.7	
								1011	

-83-

. .

WATER ELEV. 1138 + SILT ELEV. 1069 + MAX. TEMP. COND.

		SMAX	SMIN	THETA	SX	SY	TAU	
J22	INTRADOS	1037.4	-11.2	-5.9	1026.2	0.	-107.6	
	EXTRADOS	0.6	-312.0	87.4	-311.4	0.	14.2	2

0 2 Su

 ${\bf A}_{i}$

.

.

-84-

.

		ні _н ші	ج منابع				and the set of the set of the
	а 1		TABLE E-4			-	
E	AR THQUAKE C	OND **WAT	ER ELEV 112	25,SILT EL	EV 1037, MAX	TEMP	
		SMAX	SMIN	THETA	SX	SY	TAU
82	INTRADOS	440.2	-41.8	17.1	398.4	0.	135.6
	EXTRADOS	1036.7	-10.7	-5.8	1026.0	0.	-105.2
B 4	INTRADOS	793.8	-13.2	7.4	780.6	0.	102.5
	EXTRADOS	562.9	-1.7	-3.1	561.2	0.	-30.8
86	INTRADOS	637.5	-1.7	2.9	635.8	0.	32.5
	EXTRADOS	564.4	-6.8	6.3	557.6	0.	61.8
		E)					
B 8	INTRADOS	635.2	-0.0	-0.5	635.2	0.	-5.5
×.	EXTRADOS	609.8	-2.4	3.6	607.4	0.	38.6
B10	INTRADOS	632.2	-0.0	0.1	632.2	0.	1.3
ě	EXTRADOS	611.1	-1.8	-3.1	609.2	0.	-33.4
812	INTRADOS	582.9	-0.5	1.7	582.3	0.	17.3
	EXTRADOS	578.4	-3.0	-4.1	575.5	С.	-41.4
814	INTRADOS	523.1	-1.0	2.6	522.1	0.	23.4
	EXTRADOS	605.3	-1.2	-2.5	604.1	C •	-26.8

-85-

E	ARTHQUAKE C	COND **WAT	ER ELEV 11	25,SILT EL	EV 1037,MA	X TEMP			ž
		SMAX	SMIN	ТНЕТА	SX	SY	TAU		
B16	INTRADOS	441.8	-0.5	2.0	441.3	0.	15.2	1	
	EXTRADOS	754.2	-1.9	-2.8	752.3	0.	-37.5		
B18	INTRADOS	584.3	-0.0	-0.1	584.3	0.	-1.2		- 4
	EXTRADOS	730.0	-2.8	-3.5	727.3	0.	-44.9		5 a
B20	INTRADOS	836.3	-2.1	-2.9	834.2	0.	-41.9		
	EXTRADOS	601.7	-0.9	-2.2	600.8	0.	-23.2		
B22	INTRADOS	1042.7	-28.9	-9.4	1013.8	0.	-173.5		
	EXTRADOS	444.5	-1.5	3.3	443.0	0.	25.4	(4 - 3) (4 - 3)	
B24	INTRADOS	874.7	-86.1	-17.4	788.6	0.	-274.4		
	EXTRADOS	1293.2	-1.8	2.1	1291.4	0.	47.6	-	
D 2	INTRADOS	781.4	-66.6	16.3	714.8	0.	228.1		
	EXTRADOS	1017.9	-44.4	-11.8	973.4	0.	-212.6		-
D 4	INTRADOS	948.4	-310.0	7.5	927.1	-288.7	162.3		*
	EXTRADOS	912.7	240.3	-9.1	895.9	257.1	-104.9		

-86-

2	(6				0				.)	
			· · ·				1 				
			_		19						
	ΕA	RTHQUAKE C	OND **WAT	ER ELEV 112	5,SILT ELE	V 1037,MA	х темр				
		- 10-00 - 10-00	SMAX	SMIN	тнета	SX	SY	TAU			
	D 6	INTRADOS	1175.8	-209.3	1.0	1175.4	-208.9	24.5			
		EXTRADOS	982.9	308.6	6.4	974.6	316.9	74.4		<u></u>	
			4			1222 0	175 5	- 20 0			
	D 8	INTRADOS	1233.5	-126.2	-1.3	1232.8	-125.5	-30.0			
		EXTRADOS	1027.1	281.8	5.9	1019.2	289.7	76.3			
	D10	INTRADOS	1196.2	-136.1	0.3	1196.2	-136.1	7.0			
		EXTRADOS	1017.1	253.8	-3.7	1013.8	257.1	-49.7		-	
.0					-						
	D12	INTRADOS	1075.6	-239.6	1.8	1074.3	-238.•2	42.0			a.
		EXTRADOS	1079.8	254.7	-4.9	1073.7	260.8	-70.7			
	014	INTRADOS	882.6	-187.1	2.8	880.0	-184.5	52.8			
		EXTRADOS	1213.9	271.1	-2.6	1212.0	273.1	-42.8			
							×	÷.,	_		
	016	INTRADOS	777.6	-268.3	1.5	776.9	-267.6	26.6			
		EXTRADOS	1223.6	351.6	-3.9	1219.5	355.6	-59.4		e, e	
	018	ΙΝΤΡΔΟΟΣ	920.1	-351.5	-0.9	919.8	-351.2	-19.3	/		
I	910	EXTRADOS	1137.7	443.3	-6.0	1130.2	450.8	-71.7	25 	-	
		5									

-87-

			2					
	•	х темр	EV 1037,MA	5,SILT EL	ER ELEV 112	OND **WAT	ARTHQUAKE C	°E A
	TAU	SY	SX	THETA	SMIN	SMAX		_
** ⁻	-92.8	-492.4	1178.1	-3.2	-497.6	1183.2	INTRADOS	D20
	-13.1	575.2	957.9	-2.0	574.8	958.4	EXTRADOS	
		· · · · ·					÷	
	-290.5	-452.4	1297.7	-9.2	-499.4	1344.7	INTRADOS	D22
	106.5	659.0	732.3	35.5	583.1	808.2	EXTRACOS	
	-439.1	0.	657.6	-26.6	-219.8	877.4	INTRADOS	D24
	164.4	0.	905.0	10.0	-28.9	934.0	EXTRADOS	
*. · · · · · · · · · · · · · · · · · · ·								
5	119.6	-298.4	0.	19.4	-340.4	42.0	INTRADOS	F 4
	-148.3	311.4	0.	111.8	-59.3	370.7	EXTRADOS	94 HUC 1045
	24.0	-390.9	821.4	1.1	-391.4	821.9	INTRADOS	= 6
	27.6	446.5	517.0	19.0	437.0	526.5	EXTRADOS	
			¥.			2 A =		2
	23.3	-427.7	966.4	1.0	-428.1	966.8	INTRADOS	- 8
	67.7	581.9	256.0	78.7	242.5	595.4	EXTRADOS	
	0.6	-403.3	768.0	0.0	-403.3	768.0	INTRADOS	=10
2	34.2	555.7	211.8	84.4	208.4	559.1	EXTRADOS	

	<u></u>		<u> </u>		0			
							V	
EA	RTHQUAKE C	OND **WAT	ER ELEV 11	25,SILT ELE	V 1037,MA	X TEMP		
-		SMAX	SMIN	THE TA	SX	SY	TAU	
F12	INTRADOS	452.7	-466.7	1.7	451.9	-465.9	27.0	*
	EXTRADOS	520.9	450.7	116.5	464.7	506.9	-28.1	
						_		
F14	INTRADOS	139.0	-395.3	3.7	136.8	-393.0	34.6	
	EXTRADOS	836.6	511.0	-4.3	834.8	512.8	-24.4	
F16	INTRADOS	45.7	-413.5	1.9	45.2	-412.9	15.6	. V
	EXTRADOS	991.0	560.0	-5.7	986.8	564.1	-42.3	
	1.0	21 - P		×	26		+C	a
F18	INTRADOS	267.1	-470.1	-2.0	266.2	-469.2	-25.1	
	EXTRADOS	785.3	596.9	-18.5	766.4	615.8	-56.6	
F20	INTRADOS	690.1	-565.7	-3.5	685.5	-561.1	-76.0	
	EXTRADOS	650.6	361.1	93.3	362.1	649.7	-16.6	
F22	INTRADOS	1157.4	-387.5	-7.0	1134.2	-364.3	-187.7	
	EXTRADOS	568.3	29.0	81.6	40.6	556.7	78.4	
F24	INTRADOS	975.4	-75.2	-15.5	900.2	0.	-270.8	т. ¹⁸ у.
	EXTRACOS	358.9	-48.3	-20.1	310.6	0.	131.6	10 - E
							ю. 	

· · · · · · · · · · · · · · · · · · ·			•					
				381	the second second	- 13		
٤	ARTHQUAKE C	OND **WAT	ER ELEV 112	25,SILT EL	EV 1037, MA	X TEMP	- Normal	
		SMAX	SMIN	THETA	SX	SY	TAU	
H 8	INTRADOS	1092.8	15.9	4.4	1086.5	22.2	82.0	
•	EXTRADOS	208.5	27.2	18.4	190.5	45.2	54.2	. 85
H10	INTRADOS	1289.6	-174.7	2.0	1287.8	-172.9	51.2	
	EXTRADOS	403.1	182.8	75.7	196.2	3897	52.7	
H12	INTRADOS	635.1	-103.5	0.1	635.1	-103.5	1.0	
	EXTRADOS	647.3	189.3	5.7	642.7	193.9	45.6	
i.)		5				¥.		
H14	INTRADOS	186.4	-46.3	-5.8	184.1	-44.0	-23.3	
	EXTRADOS	1157.4	199.3	0.7	1157.3	199.4	11.2	
H16	INTRADOS	55.4	-55.0	-3.8	54.9	-54.5	-7.3	
	EXTRADOS	1361.2	231.8	-1.5	1360.5	232.5	-28.6	
		2						
H18	INTRADOS	327.5	-106.0	-1.4	327.2	-105.7	-10.7	
	EXTRADOS	1053.0	283.5	-4.3	1048.8	287.7	-57.0	1000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -
H20	INTRADOS	874.3	-211.0	-3.6	870.1	-206.8	-67.5	
	EXTRADOS	455.8	331.3	-21.6	438.9	348.2	-42.6	

							-	
E۸								
EA	NTINGUANE C	UND **WAT	CK CLEV IIZ	JIJILI EL	EV IUSI,MA	X IEMP		
		SMAX	SMIN	THETA	SX	SY	TAU	
H22	INTRADOS	1471.4	-158.2	-4.5	1461.4	-148.2	-127.5	
	EXTRADOS	287.1	-128.3	91.5	-128.0	286.8	-11.2	
J10	INTRADOS	1266.7	174.1	5.9	1255.0	185.8	112.5	V
-	EXTRADOS	-103.6	-126.4	79.3	-125.6	-104.4	4.2	
J12	INTRADOS	701.8	119.5	-0.2	701.7	119.5	-2.5	
	EXTRADOS	805.9	60.9	6.9	795.3	71.5	88.5	
		8	12 43					
J14	INTRADOS	240.8	91.6	-24.8	214.6	117.8	-56.8	
	EXTRADOS	1464.1	78.7	1.6	1463.0	79.8	39.2	
J16	INTRADOS	105.8	18.1	105.8	24.6	99.3	-23.0	
	EXTRADOS	1666.6	96.5	-0.6	1666.4	96.6	-16.4	
		a -					с.	
J18	INTRADOS	318.5	95.3	-1.9	318.3	95.5	-7.4	
	EXTRADOS	1251.5	125.5	-2.8	1248.9	128.1	-54.4	
J20	INTRADOS	870.8	69.7	-6.1	861.8	78.8	-84.6	11 11 2
	EXTRADOS	434.7	124.1	-5.9	431.4	127.4	-32.0	

-91-

9 19	(8°	2		4 N 30		8. 5	e ^x e =	24 P.	0
3			. `	× 4				<i>C</i>		
								2		
u l	EÆ	ARTHQUAKE C	OND **WAT	ER ELEV 112	5,SILT EL	EV 1037.MA)	TEMP			
Ē			SMAX	SMIN	THETA	SX	SY	TAU	in the second	a A
	J22	INTRADOS	1368.1	-17.9	-6.5	1350.2	0.	-156-4		
		EXTRADOS	0.1	-344.1	89.0	-344.0	0.	6.2		
			*				7.			
	•	6							20	
_			_	-			a			1
							× .	-		
- * + 		e.		3		* 				÷
			1 1		1.5	2 ¹⁰ 82	ġ.	4		4
_	EC.		10		2 AQ 2 74		_			
			÷.		5	1. J.	je ⁿ s		11 B B A	
				2					<i>y</i>	
		_	<u></u>		8		1		h	
4	2	15								
			- K		ι		Q.			
14 14 11 11 11 11 11 11 11 11 11 11 11 11 11				A. A. A.				1	- (i)	
			k.	4 V				•		- •
2 					_				2	
92-										